

CARDIOVASCULAR System

ANATOMY, PHYSIOLOGY & PATHOLOGY

TAILORED FOR MEDICAL STUDENTS, USMLE, PLAB, PA & NURSING

4th EDITION

199 PAGES

Table Of Contents:

What's included: Ready-to-study anatomy, physiology and pathology notes of the cardiovascular system presented

in succinct, intuitive and richly illustrated downloadable PDF documents. Once downloaded, you may choose to either print and bind them, or make annotations digitally on your iPad or tablet PC.

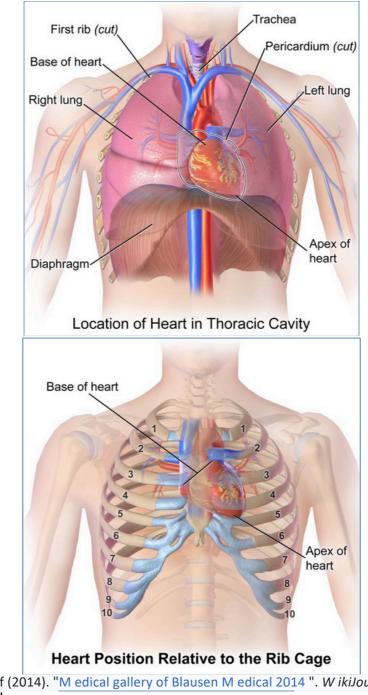
Anatomy & Physiology Notes:

- ANATOMY OF THE HEART
- ELECTROPHYSIOLOGY OF THE HEART
- ELECTROCARDIOGRAM (ECG) PHYSIOLOGY
- MECHANICAL EVENTS OF THE CARDIAC CYCLE
- · CARDIO-DYNAMICS
- HAEMODYNAMICS / HEMODYNAMICS
- BLOOD PRESSURE PHYSIOLOGY
- ANATOMY & PHYSIOLOGY OF BLOOD VESSELS
- PHYSIOLOGY OF HYPERTENSION
- PHYSIOLOGY OF SHOCK
- PHYSIOLOGY OF MYOCARDIAL ISCHAEMIA / ISCHEMIA
 THE EFFECTS OF AGEING ON THE HEART

Pathology Notes:

- CONGENITAL HEART DEFECTS
- ANEURYSMS & DISSECTIONS
- ARRHYTHMIAS
- DRUG CLASSES FOR TREATING ARRHYTHMIAS
- DYSLIPIDAEMIA
- **ATHEROSCLERO**SIS
- **ISCHAEMIC HEART DISEASE**
- ACUTE CARDIOGENIC PULMONARY OEDEMA
- HEART FAILURE
- CARDIOMYOPATHIES ("HEART MUSCLE DISEASES")
- PATHOLOGY OF HYPERTENSION
- PATHOLOGY OF SHOCK
- DVT & PE
- CARCINOID HEART DISEASE
- INFECTIVE ENDOCARDITIS
- NON-INFECTIVE ENDOCARDITIS (NBTE Non Bacterial Thrombotic Endocarditis)
- LYMPHANGITIS
- MYOCARDITIS VIRAL & TOXIC
- PERICARDITIS
- PERICARDIAL EFFUSION
- **CARDIAC TAMPONADE**
- ACUTE ARTERIAL OCCLUSION ("CRITICAL LIMB ISCHAEMIA")
- PERIPHERAL VASCULAR DISEASE
- VARICOSE VEINS
- CHRONIC SKIN ULCERS
- TUMOURS OF VESSELS
- IMPORTANT VASCULITIDES
- RHEUMATIC FEVER & RHEUMATIC HEART DISEASE
 VALVULAR HEART DISEASE & MURMURS
 CARDIOVASCULAR DISEASE & OBESITY; NUTRITION & PHYSICAL EXERCISE

www.getdirectionglobal.com


ANATOMY OF THE HEART

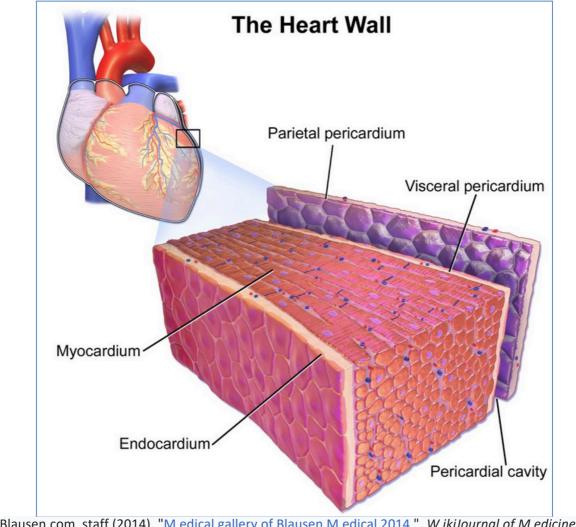
HEART ANATOMY:

Anatomical Location of the Heart:

- Snugly enclosed within the *middle mediastinum* (medial cavity of thorax). Contains:
 - o Heart
 - o Pericardium
 - o Great Vessels
 - o Trachea
 - o Esophagus
- Middle Mediastinum located in the inferior mediastinum (lower than the sternal angle)
- Extends obliquely from 2nd rib \rightarrow 5th intercostal space.
- Anterior to Vertebrae
- Posterior to Sternum
- Flanked by 2 lungs
- Rests on the diaphragm
- 2/3 of its mass lies to the LHS of the *midsternal line*.

Blausen.com staff (2014). "<u>M edical gallery of Blausen M edical 2014</u>". *W ikiJournal of M edicine* 1 (2). www.getdirectionglobal.com 8015000900

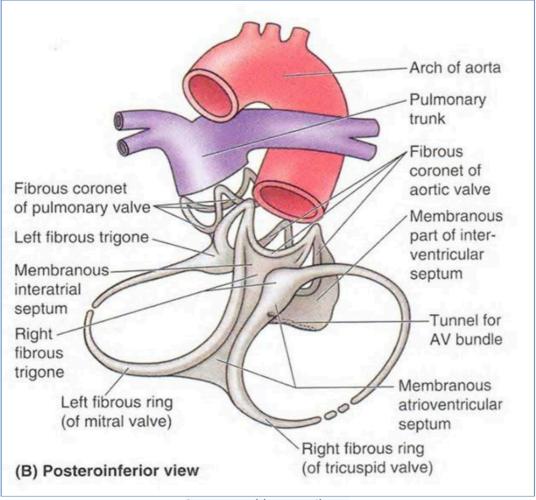
The Pericardium: (Coverings of the Heart)


- A double-walled sac
- contains a film of lubricating serous fluid
- 2 Layers of Pericardium:
 - Fibrous Pericardium:
 - § Tough, dense connective tissue
 - § Protects the heart
 - § Anchors it to surrounding structures
 - § Prevents overfilling of the heart if fluid builds up in the pericardial cavity, it can inhibit effective pumping. (Cardiac Tamponade)
 - o Serous Pericardium: (one continuous sheet with '2 layers')
 - § Parietal Layer Lines the internal surface of the fibrous pericardium
 - § Visceral Layer (aka Epicardium) Lines the external heart surface

Layers of the Heart Wall:

- Epicardium:
 - o Visceral layer of serous pericardium

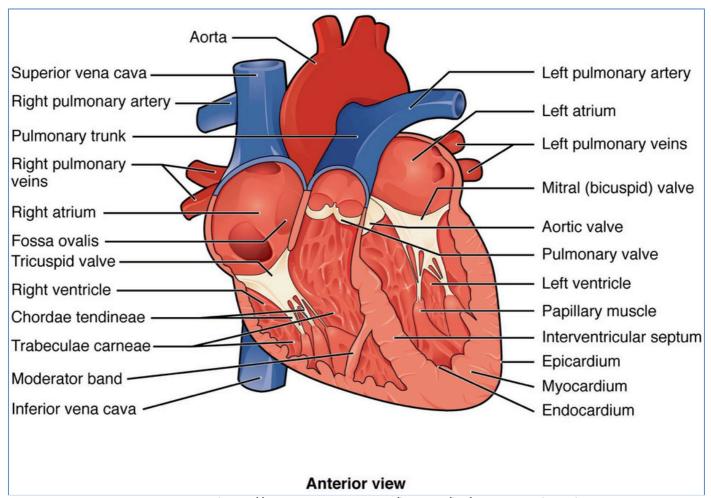
Myocardium:


- o Muscle of the heart
- o The layer that 'contracts'
- Endocardium:
 - o Lines the chambers of the heart (Endothelial Cells)
 - o Prevents clotting of blood within the heart
 - Forms a barrier between the O2 hungry myocardium and the blood. (blood is supplied via the coronary system)

Fibrous Skeleton of the Heart:

- **Get Direction** GLOBAL
- The network of connective tissue fibers (collagen & elastin) within the myocardium •
- Anchors the cardiac muscle fibers + valves + great vessels.
- Reinforces the myocardium
- **Provides Electrical Isolation**
- 2 Parts:

- Septums: о
 - § Flat sheets separating atriums, ventricles & left and right sides of the heart.
 - § Electrically isolates the left & right sides of the heart (conn. Tissue = non-conductive) §
 - Important for cardiac cycle
 - (interatrial septum/atrioventricular septum/interventricular septum) Rings around great vessel entrances & valves
 - **Rings:**
 - stop stretching under pressure §
 - §

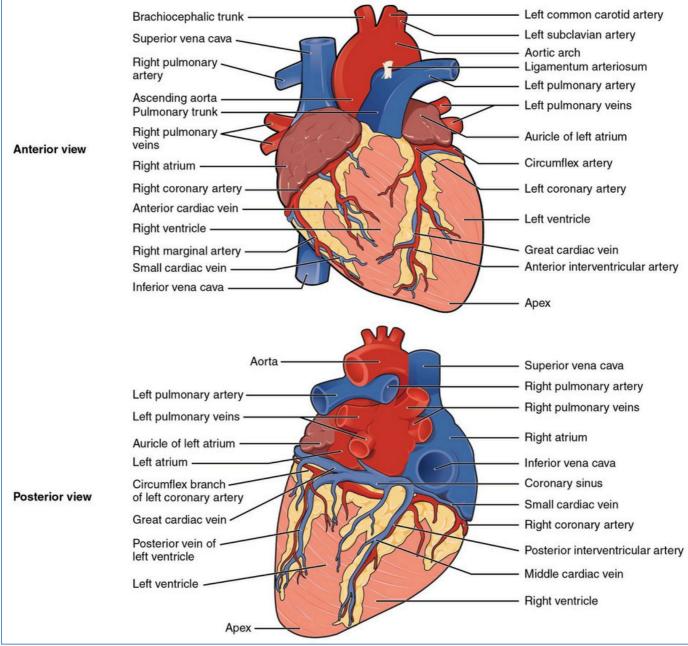


Source: unable to attribute.

Chambers & Associated Great Vessels:

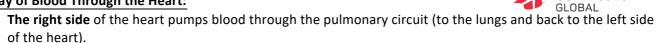
- 2 Atria (superior): [Atrium = Entryway]
 - o Thin-walled Receiving Chambers
 - o On the superior aspect of heart (above the ventricles).
 - o Each have a small, protruding appendage called **Auricles** increase atrial volume.
 - o Separated by Atrial Septum (Site of Foetal Shunt Foramen Ovale)
 - o Right Atrium:
 - § Ridged internal anterior wall due to muscle bundles called **Pectinate Muscles**.
 - § Blood enters via 3 veins:
 - Superior Vena Cava
 - Inferior Vena Cava
 - Coronary Sinus (collects blood draining from the myocardium)
 - 0 Left Atrium:
 - § Blood enters via:
 - The 4 pulmonary veins (O2 blood)
- 2 Ventricles (inferior): [Vent = Underside]
 - o Thick, muscular Discharging Chambers
 - o The 'pumps' of the heart
 - o Trabeculae Carneae [crossbars of flesh] line the internal walls
 - o Papillary Muscles play a role in valve function.
 - o Right Ventricle:
 - § Most of heart's Anterior Surface
 - § Thinner responsible for the *Pulmonary Circulation* Via **Pulmonary Trunk**
 - o Left Ventricle:
 - § Most of the heart's Postero-Inferior Surface
 - § Thicker it is responsible for the Systemic Circulation Via Aorta

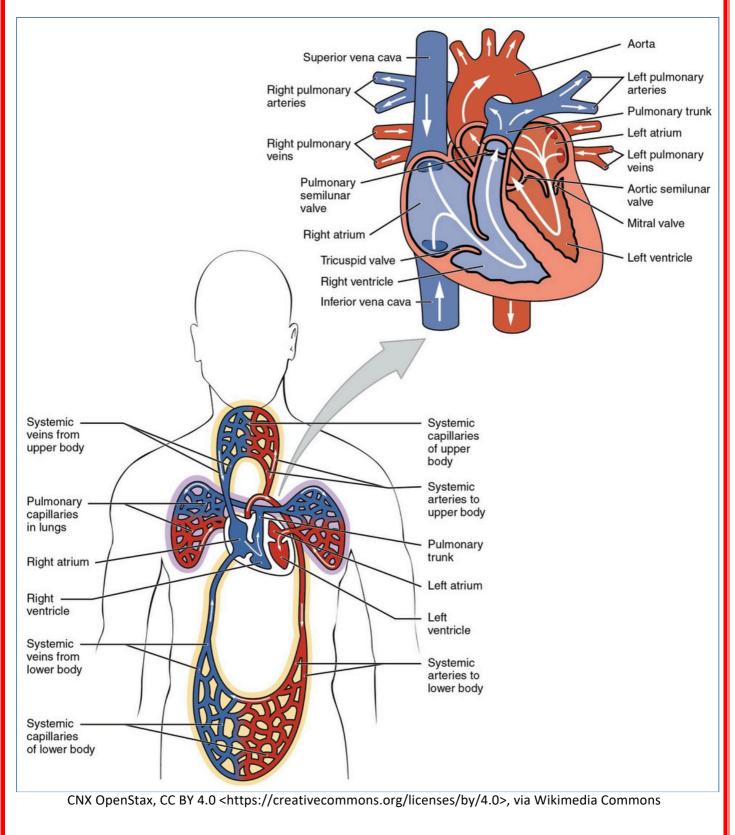
www.getdirectionglobal.com


Landm arks of the Heart:

- Coronary Sulcus (Atrioventricular Groove):
 - o Encircles the junction between the Atria & Ventricles like a 'Crown' (Corona).
 - o Cradles the Coronary Arteries (R&L), Coronary Sinus, & Great Cardiac Vein

• Anterior Interventricular Sulcus:


- o Cradles the Anterior Interventricular Artery (Left Anterior Descending Artery)
- o Separates the right & left Ventricles anteriorly
- o Continues as the posterior Interventricular Sulcus.
- Posterior Interventricular Sulcus:
 - o Cradles the Posterior Descending Artery
 - o Continuation of the Anterior Interventricular Sulcus
 - o Separates the right & left Ventricles posteriorly


CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

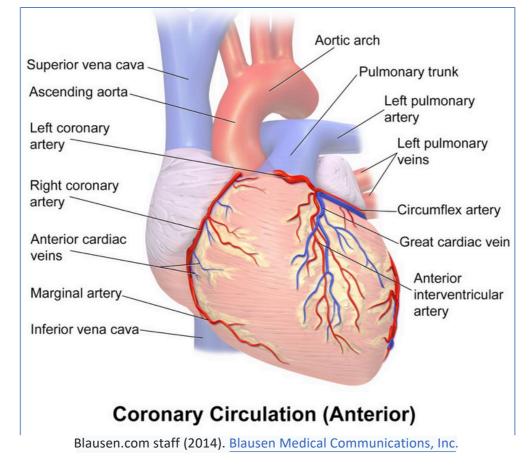
Pathway of Blood Through the Heart:

٠

- Blood flowing through the pulmonary circuit gains oxygen and loses carbon dioxide, indicated by the colour change from blue to red.
- **The left side** of the heart pumps blood via the systemic circuit to all body tissues and back to the right side of the heart.
 - o Blood flowing through the systemic circuit loses oxygen and picks up carbon dioxide (red to blue colour change)

Get Direction

Coronary Circulation:


- The myocardium's own blood supply
- The shortest circulation in the body
- Arteries lie in epicardium prevents the contractions inhibiting bloodflow
- There is a lot of variation among different people.
- Arterial Supply:

O Encircle the heart in the coronary sulcus

o Aorta \rightarrow Left & Right coronary arteries

§ Left Coronary Artery \rightarrow 2 Branches:

- 1- Anterior InterVentricular Artery (aka. Left Anterior Descending Artery ...or LAD).
 - 0 Follows the Anterior InterVentricular Sulcus
 - o Supplies Apex, Anterior LV, Anterior 2/3 of IV-Septum.
- 2- Circumflex Artery
 - Follows the Coronary Sulcus (aka. AtrioVentricular Groove)
 Supplies the *Left Atrium + Lateral LV*
- § **Right Coronary Artery** → 2 ('T-junction) Branches:
 - 1- Marginal Artery:
 - o Serves the Myocardium Lateral RHS of Heart
 - 2- Posterior Interventricular Artery:
 - 0 Supplies posterior ventricular walls
 - o Anastomoses with the Anterior Interventricular Artery (LAD)

Venous Drainage:

- 0 Venous blood collected by the **Cardiac Veins**:
 - § Great Cardiac Vein (in Anterior InterVentricular Sulcus)
 - Middle Cardiac Vein (in Posterior InterVentricular Sulcus)
 - § Small Cardiac Vein (along Right inferior Margin)
 - o Which empties into the **Right Atrium**. 8015000900

www.getdirectionglobal.com

§

Heart Valves:

• Ensure *unidirectional flow of blood* through the heart.

2x AtrioVentricular (AV) (Cuspid) Valves:

- O Location:
 - § At the 2 Atrial-Ventricular junctions

Function:

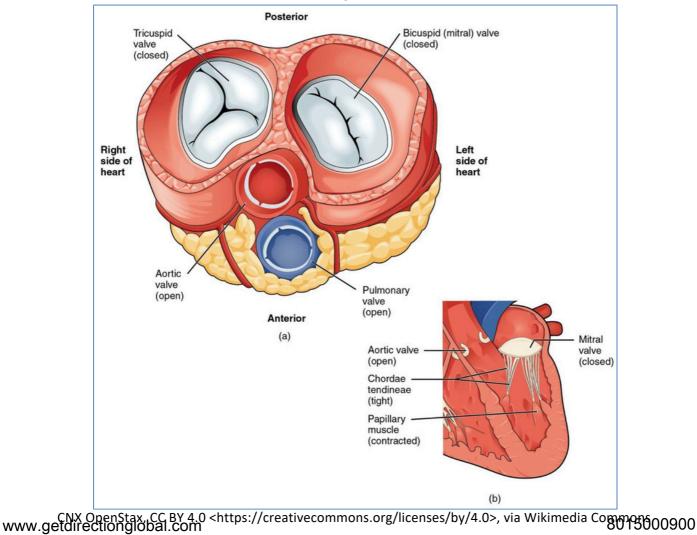
δ

- § Prevent backflow into the Atria during Contraction of Ventricles
- Chordae tendinae (tendinous cords) "heart strings" Attached to each valve flap.
 - Anchor the cusps to the **Papillary Muscles** protruding from ventricular walls.
 - Papillary muscles contract before the ventricle to tension the chordae tendinae.
 - Prevent inversion of valves under ventricular contraction.

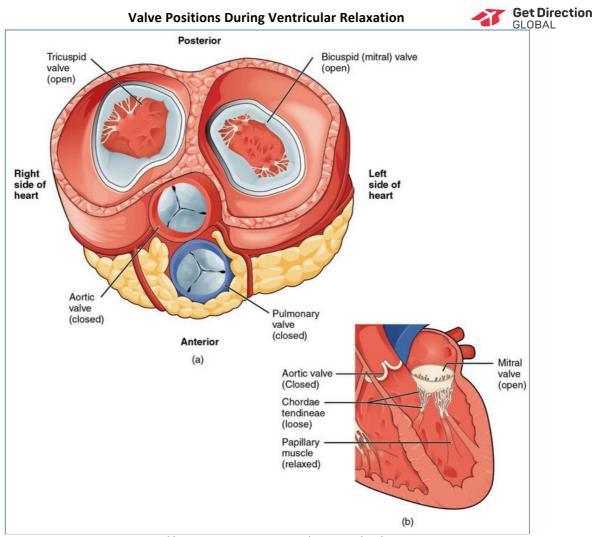
8 Tricuspid Valve (Right):

§ 3 flexible 'cusps' (flaps of endocardium + Conn. Tissue)

Mitral Valve (Left):


§ (resembles the 2-sided bishop's mitre [hat])

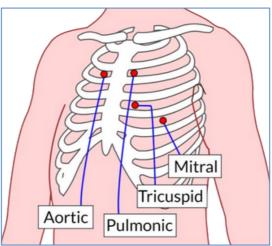
• 2x SemiLunar (SL) Valves:


- o Located at the bases of both large arteries issuing from the Ventricles.
- o Each consists of 3 pocket-like cusps resembling a crescent moon (semilunar = half moon)
- o Open under Ventricular Pressure
- o Pulmonary Valve:
 - § Between Right Ventricle & Pulmonary Trunk

^o Aortic Valve:

§ Between Left Ventricle & Aorta

Valve Positions During Ventricular Contraction



CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

Valve Sounds:

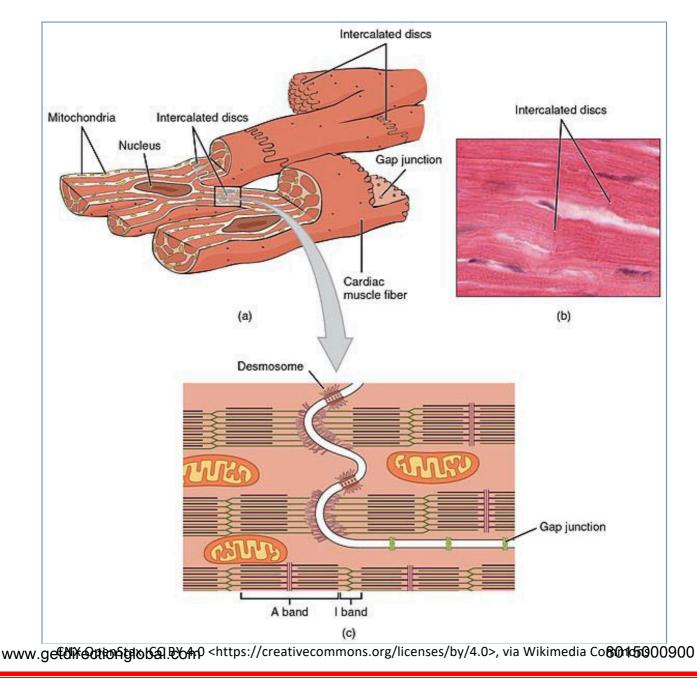
- o <u>1- "Lubb":</u>
 - § Sound of AV Valve Closure
 - § (M1 = Mitral Component)
 - § (T1 = Tricuspid Component)
- o <u>2- "Dupp":</u>
 - § Sound of Semilunar Valve Closure
 - § (A2 = Aortic Component)
 - § (P2 = Pulmonary Component)

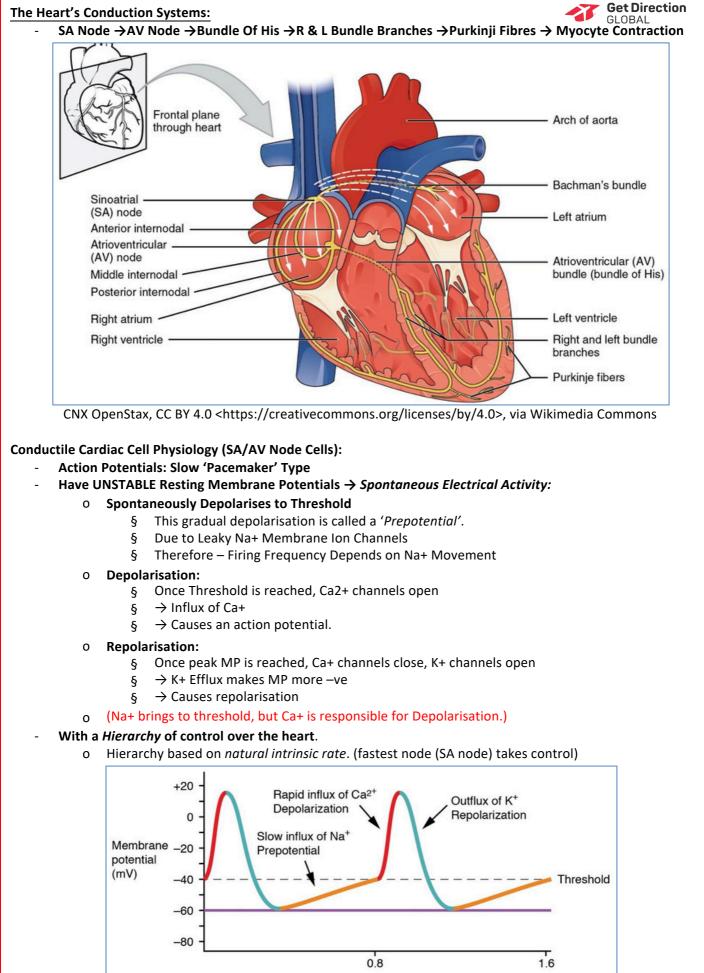
• W here to Listen:

www.getdirectionglebale.com File:Precordial Leads 2.svg (by Jmarchn) and Rib_Cage (Jeroen Hut) 8015000900

ELECTROPHYSIOLOGY OF THE HEART:

ELECTROPHYSIOLOGY OF THE HEART




The Heartbeat:

- Heart is a Muscle & Requires:
 - o 02
 - o Nutrients, &
 - 0 Action Potentials; to function.
 - However, these neural signals don't come from the brain;
 - o Rather, the heart has its **own** conduction systems.
 - § These systems *allow it to contract autonomously*
 - 0 Hence why a *transplanted heart* still operates (if provided with O2 & nutrients)
- Cardiac Activity is Coordinated:
 - o To be effective, the Atria & Ventricles must contract in a *coordinated manner*.
 - o This activity is coordinated by the Heart's Conduction Systems.....

- The Entire Heart is Electrically Connected...By:

- o Gap Junctions:
 - § Allows action potentials to move from cell to cell
- ⁰ Intercalated Discs:
 - § Support synchronised contraction of cardiac tissue

Time (s)

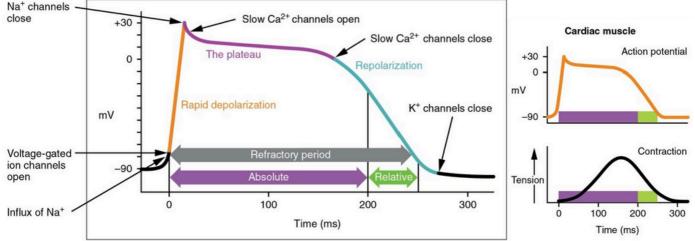
CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons www.getdirectionglobal.com

Contractile Cardiac Cell Physiology (Purkinje Fibres & Myocytes):

- Action Potentials: Fast 'Non-Pacemaker' Type
- Have STABLE Resting Membrane Potentials.

o Resting Membrane Potential (MP):

- S Na+ & Ca+ channels are closed.
- Any +ve change to MP causes Fast Na+ channels to open \rightarrow +ve feedback \rightarrow Threshold
- **Depolarisation:**
 - β If MP reaches threshold, all Fast Na+ channels open;
 - $\beta \rightarrow$ Massive influx of Na+ into cell
 - $_{S} \rightarrow$ Membrane depolarises
- O Plateau:
 - § Fast Na+ channels inactivate.
 - \rightarrow The small downward deflection is due to Efflux of K+ ions
 - $\beta_{\beta} \rightarrow$ Action potential causes membrane Voltage-Gated Ca+ channels to open
 - This triggers further Ca+ release by the Sarcoplasmic Reticulum into the Sarcoplasm. ("Ca induced Ca Release")
 - o This increased myoplasmic Ca+ causes muscular contraction.
 - Plateau is sustained by influx of Ca+, balanced by efflux of K+ ions


O Repolarization:

- ς Influxing Ca+ channels close.....The effluxing K+ channels remain open;
 - \rightarrow Result is a net *outward* flow of +ve charge. \rightarrow Downward Deflection
 - ightarrow As the MP falls, more K+ channels open, accelerating depolarization.
 - \rightarrow Membrane Repolarizes & most of the K+ channels close.

o What Happens to the Excess lons??

- ε Excess Na+ in the cell from depolarization is removed by the Na/K-ATPase.
- \tilde{S} Deficit of K+ in the cell from repolarization is replaced by the Na/K-ATPase.
- ε Excess Ca+ from the Plateau Phase is eliminated by a Na/Ca Exchanger.

NOTE: There is a considerable delay between Myocardial Contraction & the Action Potential.

CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

Refractory Periods:

 In Cardiac Muscle, the Absolute Refractory Period continues until muscle relaxation; o Therefore summation isn't possible → tetany cannot occur (critical in heart) o Ie: The depolarised cell won't respond to a 2nd stimulus until contraction is finished.

Absolute Refractory Period:

o Approx 200ms

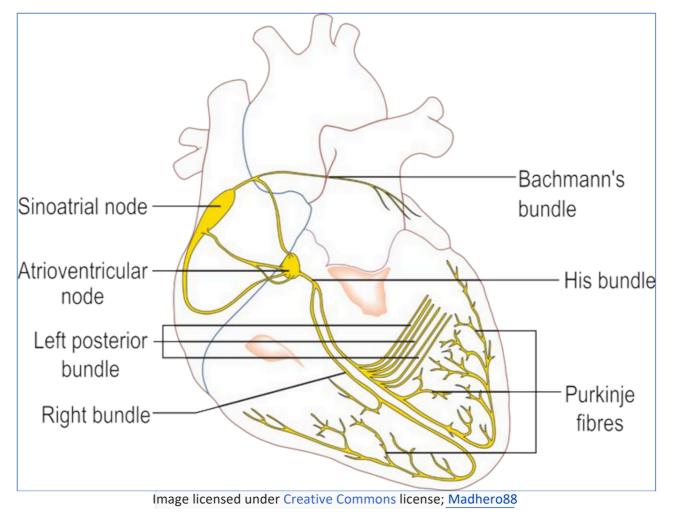
o Duration: from peak \rightarrow plateau \rightarrow halfway-repolarised.

- Relative Refractory Period:

- o Na+ channels are closed but can still respond to a stronger-than-normal stimulus.
- o Approx 50ms
- 0 Duration: Last half of repolarisation

www.getdirectionglobal.com

The SinoAtrial (SA) Node:


- Get Direction
- = The "PaceMaker" of the Heart: Unregulated Rate: 90-100bpm.....however;
 - o Parasympathetic NS lowers heart rate \rightarrow Keeps Normal Resting HR at 70bpm
 - o Sympathetic NS raises heart rate.
- Location:
 - o Posterior Wall of the Right Atrium near the opening of the Superior Vena Cava
- Nature of Action Potentials:
 - o Continually Depolarizing 90-100bpm
 - o Takes 50ms for Action-Potential to reach the AV Node.
- Role in Conduction Network:
 - o Sets the pace for the heart as a whole.
- Portion of Myocardium Served:
 - o Contracts the Right & Left Atrium

The AtrioVentricular (AV) Node:

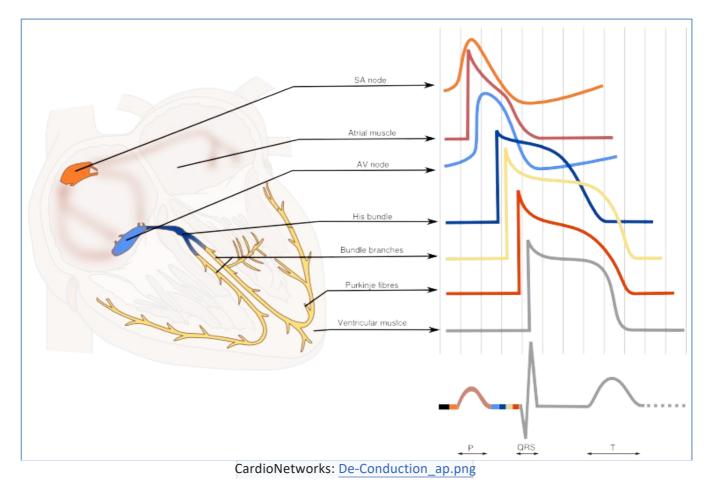
- 2nd in Command: Slower than the SA Node: 40-60bpm
- Location:
 - o Inferior portion of the InterAtrial Septum; Directly above the TriCsupid Valve.
- Nature of Action Potentials:
 - o Continually Depolarizing but slower than the SA Node. (40-60bpm)
- Role in Conduction Network:
 - o To delay the impulse from the SinoAtrial Node \rightarrow Bundle Branches;
 - o Delay allows the Atria to empty their contents before Ventricular Contraction
 - o Delay: Approx. 100ms

- Portion of Myocardium Served:

o Conducts the SA Node Impulses to the Purkinje Fibres (which supply the Ventricular Walls)

www.getdirectionglobal.com

The Bundle Branches (Bundles of His):


- 3rd in Command: Slower than AV & SA Nodes: 20-40bpm
- Location:
 - o Fork of branches Superior Portion of InterVentricular Septum
- Nature of Action Potentials:
 - o Continually Depolarising Slower than AV & SA Nodes (20-40bpm)
 - Role in Conduction Network:
 - o Serves as the only connection between the 2 Atria & 2 Ventricles.
 - The 2 Atria & 2 Ventricles are isolated by the fibrous skeleton and lack of gap junctions.
- Portion of the Myocardium Served:
 - o Transmits impulses from the AV Node to the R & L Bundle Branches,
 - § Then along the InterVentricular Septum \rightarrow Apex of the Heart.

The Purkinje Fibres:

- Specialised Myocytes with very few myofibrils \rightarrow don't contract during impulse transmission.
- Location:
 - o The Inner Ventricular Walls of the Heart just below the Endocardium
 - 0 Begin at the heart apex, then turn superiorly into the Ventricular Walls.
- Nature of Action Potentials:
 - o Conductile; but...Resembles those of Ventricular Myocardial Fibers;
 - § However the Depolarisation is more pronounced & Plateau is longer.
 - § Long Refractory period
 - o Capable of Spontaneous Depolarisation 15bpm

- Role in Conduction Network:

- o Carry the contraction impulse from the L & R Bundle Branches to the Myocardium of the Ventricles;
- o Causes Ventricles to Contract.
- Portion of Myocardium Served:
 - o R & L Ventricles.

www.getdirectionglobal.com

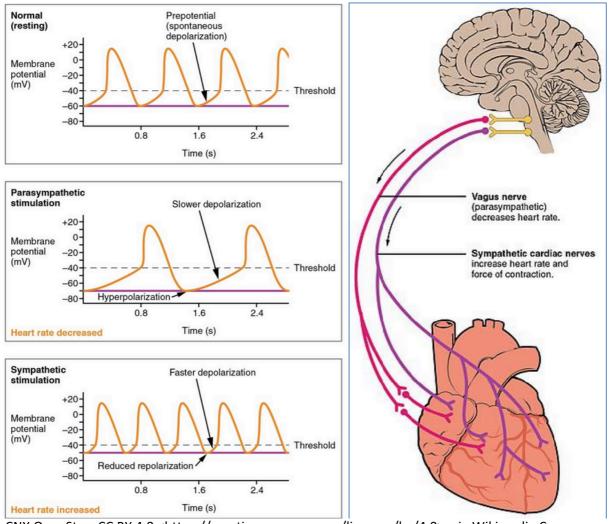
Effects of the Autonomic Nervous System (ANS):

- Although the heart can operate on its own, It normally communicates with the brain via the A.N.S.
- Parasympathetic NS:
 - o Innervates SA & AV Nodes \rightarrow Slows Heart Rate
 - o **Direct Stimulation** \rightarrow Releases AcetylCholine \rightarrow *Muscarinic* receptors in SA/AV Nodes \rightarrow
 - $_{\rm S}$ Causes increased K+ permeability (Efflux) \rightarrow Hyperpolarises the cell \rightarrow
 - Cell takes longer to reach threshold \rightarrow *Lower Heart Rate*

- Sympathetic NS:

- o Innervates the SA & AV Nodes & Ventricular Muscle.
 - § \rightarrow Raises Heart Rate
 - § \rightarrow Increases Force of Contraction
 - $\S \rightarrow Dilates$ Arteries

o Indirect Stimulation \rightarrow Sympathetic Nerve Fibres Release NorAdrenaline (NorEpinephrine) @ their


- cardiac synapses \rightarrow Binds to Beta 1 Receptors on Nodes & M uscles \rightarrow
 - § Initiates a Cyclic AMP Pathway → Increases Na+ + Ca+ Permeability in Nodal Tissue & Increases Ca+ Permeability(Membrane & SR) in Muscle Tissue.

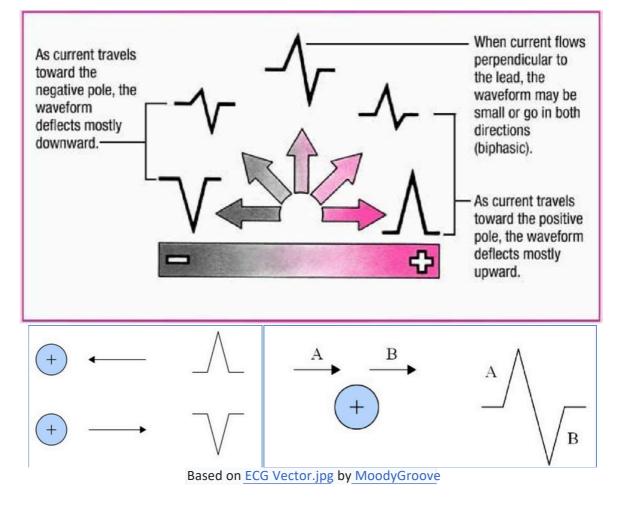
O Effects on Nodal Tissue:

- ς ++Permeability to Na+ \rightarrow more influx of Na+ \rightarrow Membrane 'drifts' quicker to threshold \rightarrow
- S Increased Heart Rate
- ³ ++Permeability to Ca+ → more influx of Ca+ → Membrane Depolarisation is quicker → Increased Heart Rate

0 Effects on Contractile Tissue:

- $_{\mbox{\scriptsize S}}$ ++ Membrane Permeability to Ca+ \rightarrow More influx of Ca+ \rightarrow
- s ++Sarcoplasmic Reticulum Permeability to Ca+ \rightarrow Efflux of Ca+ into cytoplasm \rightarrow
 - Increases available Ca+ for contraction → Contractile Force Increases

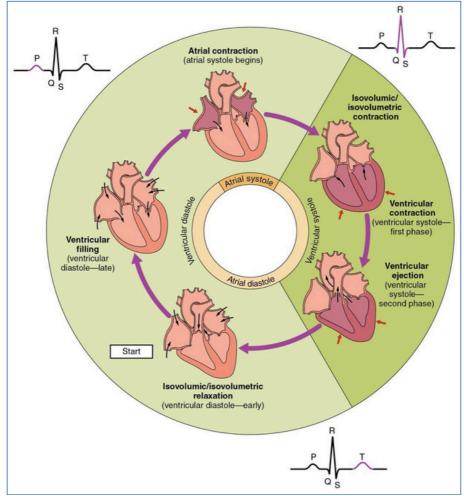
CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons www.getdirectionglobal.com 8015000900


ELECTROCARDIOGRAM (ECG) PHYSIOLOGY:

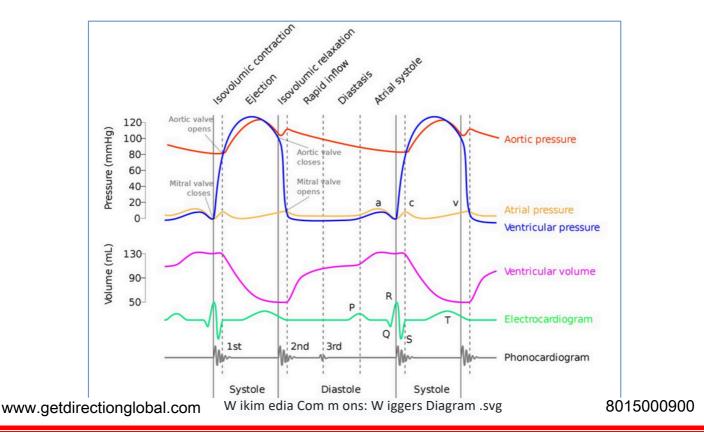
ELECTROCARDIOGRAM (ECG) PHYSIOLOGY:

What Is An ECG?

- A Recording of all Action Potentials by Nodal & Contractile Cells in the heart at a given time.
 - 0 NOTE: It IS NOT a single action potential.
 - o NOTE: A "Lead" refers to a combination of *electrodes* that form an *imaginary line* in the body, along which the electrical signals are measured.
 - § Ie: A 12 'lead' ECG usually only uses 10 electrodes.
- Measured by VoltMetres → record electrical potential across 2 points:
 - o **3x Bipolar Leads**: Measure Voltages between the Arms...OR...Between an Arm & a LEg:
 - § I = LA (+) RA (-)
 - § II = LL (+) RA (-)
 - § III = LL (+) LA (-)
 - 0 9x Unipolar Leads:
 - § Look at the heart in a '3D' Image.
 - o (A "*Lead*" refers to a combination of *electrodes* that form an *imaginary line* in the body, along which the electrical signals are measured. Ie: A 12 'lead' ECG usually only uses 10 electrodes.)
- Graphic Output:
 - o X-axis = Time
 - o Y-axis = Amplitude (voltage) Proportional to number & size of cells.
- Understanding Waveforms:
 - o When a Depolarisation Wavefront moves toward a positive electrode, a *Positive* deflection results in the corresponding lead.
 - o When a Depolarisation Wavefront moves away from a positive electrode, a *Negative* deflection results in the corresponding lead.
 - o When a Depolarisation Wavefront moves *perpendicular* to a positive electrode, it first creates a positive deflection, then a negative deflection.



www.getdirectionglobal.com


How Each Wave & Segment Is Formed:	Get Direction GLOBAL
 P – Wave: Depolarization of the Atria Presence of this waves indicates the SA Node is working 	
 PR-Segment: Reflects the delay between SA Node & AV Node. Atrial Contraction is occurring at this time. 	Ser la
 Q - Wave: Interventricular Septum Depolarization Wave direction (see blue arrow) is perpendicular to the Main Electrical Axis → results in a 'Biphasic' trace. Only the -ve deflection is seen due to signal cancellation by Atrial Repolarization. o Sometimes this wave isn't seen at all 	
 R – Wave: Ventricular Depolarization Wave Direction (blue arrow) is the same as the Main Electrical Axis → Positive Deflection. R-Wave Amplitude is large due to sheer numbers of depolarizing myocytes. 	
 S – Wave: Depolarisation of the Myocytes at the last of the Purkinje Fibres. Wave Direction (black arrow) opposes the Main Electrical Axis → Negative Deflection This wave is not always seen. 	
 ST – Segment: Ventricular Contraction is occurring at this time. Due to the lag between excitation & contraction. 	
 T – Wave: Ventricular Repolarisation Positive deflection despite being a Repolarisation wave – because Repol. Waves travel in the opposite direction to Depol Waves. 	
www.getdirectionglobal.com	8015000900

Relating ECG Waves To Events In The Cardiac Cycle:

- Contractions of the Heart ALWAYS Lag Behind Impulses Seen on the ECG.
- Fluids move from High Pressure \rightarrow Low Pressure
- Heart Valves Ensure a UniDirectional flow of blood.
- Coordinated Contraction Timing Critical for Correct Flow of Blood.

CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

The Heart's Electrical Axis:

- Get Direction Refers to the general direction of the heart's depolarisation wavefront (or 'mean electrical vector') in the 0
- o frontal plane.
- It is usually oriented in a 'Right Shoulder to Left Leg' direction. 0

Determining The Electrical Axis From an ECG Trace:

o 3 Methods:

- Quadrant Method (the one you're concerned with) 0
- o Peak Height Measurement Method
- o The Degree Method

o The Quadrant Method:

Lead 1	Lead aVF	Quadrant	Axis
POSITIVE	POSITIVE	-90° 180° 0° +90°	Normal Axis (0 to +90°)
POSITIVE	NEGATIVE	-90° 180° 0° +90°	** Possible LAD (0 to -90°)
NEGATIVE	POSITIVE	-90° 180° +90°	RAD (+90° to 180°)
NEGATIVE	NEGATIVE	-90° 180° 0° +90°	Extreme Axis (-90° to 180°)

Source: unable to attribute.

Normal Axis. QRS positive in I and aVF (0 90 degrees). Normal axis is actually 30 to 105 degrees. 0

Left Axis Deviation (LAD). QRS positive in I and negative in aVF, 30 to 90 degrees 0

Right Axis Deviation (RAD). QRS negative in I and positive in aVF, +105 to +180 degrees 0

Extreme RAD. QRS negative in I and negative in aVF, +180 to +270 or 90 to 180 degrees 0

Algorithm For Looking At ECGs:

Check Pt ID

- Check Voltage & timing

- o 25mm/sec
- 0 1large square = 0.2s (1/5sec)
- o 1small square = 0.04s
- What is the rate?
 - o 300/number of large squares between QRS Complexes
 - § Tachycardia
 - >100bpm
 - Bradycardia

• <60bpm

- What is the Rhythm?
 - o Sinus? (are there P-Waves before each QRS complex)
 - 0 If Not Sinus?

§

- § Is it regular
- § Irregular?
- § Irregularly Irregular (AF)
- § Brady/Tachy
- Atrial Fibrillation:
 - 0 Irregularly Irregular
 - o P-Waves @ 300/min
- QRS:
 - 0 Is there one QRS for each Pwave?
 - O Long PR Interval? (1st degree heart block)
 - o Missed Beats? (Second degree block)
 - o No relationship? Complete heart block

- Look for QRS Complexes:

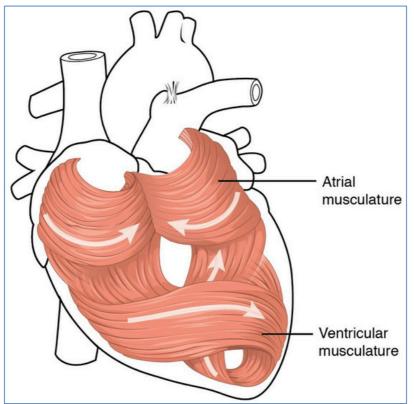
- O How wide should be < 3 squares
- o If wide It is most likely Ventricular
- o (Sometimes atrial with aberrant conduction (LBBB/RBBB)
- o IF Tachycardia, & Wide Complex → VT is most likely. (If hypotensive → Shock; if Normotensive → IV Drugs)

- Look for TWaves:

o Upright or Inverted

Look at ST-Segment

- o Raised, depressed or inverted
- o ST Distribution \rightarrow Tells you which of the coronaries are blocked/damaged
 - § Inferior ischaemia (II, III, AVF)
 - § Lateral ischaemia (I, II, AVL, V5, V6)
 - § Anterior ischaemia (V, leads 2-6)
- o NOTE: Normal ECG Doesn't exclude infarct.
- o ST Depression \rightarrow Ischaemia
- o ST Elevation \rightarrow Infarction
- o If LBBB or Paced, you CANNOT comment on ST-Segment


MECHANICAL EVENTS OF THE CARDIAC CYCLE

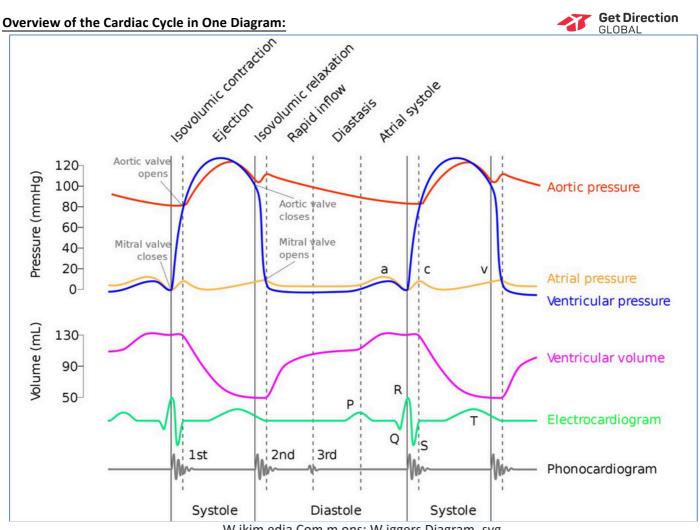
MECHANICAL EVENTS OF THE CARDIAC CYCLE

Structure-Function Relationship of the Heart

- The Myocardium is essentially one long muscle orientated in a spiral-like fashion
 - o This allows the heart to be electrically integrated
 - o Allows the heart to 'wring out' the blood within it
 - o This setup facilitates a Strong Pumping Action.

OpenStax College, CC BY 3.0 < https://creativecommons.org/licenses/by/3.0>, via Wikimedia Commons

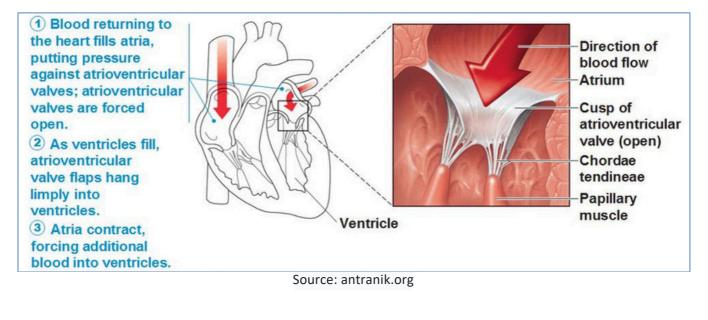
Terms:


- Systole = Myocardial Contraction Diastole = Myocardial Relaxation
- **Stroke Volume =** Output of Blood from the Heart *Per Contraction* (≈80mL of blood)
- Heart Rate = #Heart Beats/Minute Cardiac Output:

- o Volume of Blood Ejected from the Heart *Per Minute* (Typically ≈5L/min)
- Cardiac Output = Heart Rate x Stroke Volume
- o Chronotropic Influences:
- 0 § Affect Heart Rate
- ^O Inotropic Influences:
 - § Affect *Contractility* (& :. stroke volume)

Dromotropic Influences:

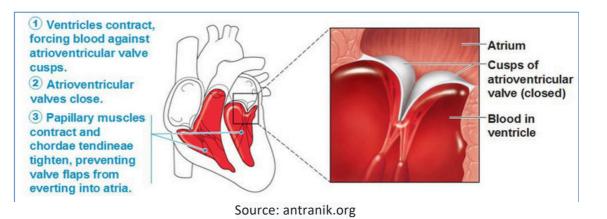
- § Affect AV-Node Delay.
- End Diastolic Volume = Ventricular Volume @ end of Diastole (When Ventricle is Fullest)
- End Systolic Volume = Ventricular Volume After Contraction (Normal ≈ 60-65%)
- **Preload =** The degree of *Stretching* of the Heart Muscle during Ventricular Diastole.
 - o (\uparrow Preload = \uparrow cross linking of myofibrils = \uparrow Contraction ("*Frank Starling Mechanism*")
- **Afterload =** The Ventricular Pressure required to *Eject* blood into Aorta/Pulmonary Art.
 - o (\uparrow Afterload = \downarrow SV due to \downarrow ejection time)


www.getdirectionglobal.com

W ikim edia Com m ons: W iggers Diagram .svg

PHASE 1- Atrial Contraction (Systole) + Ventricular Filling (Diastole):

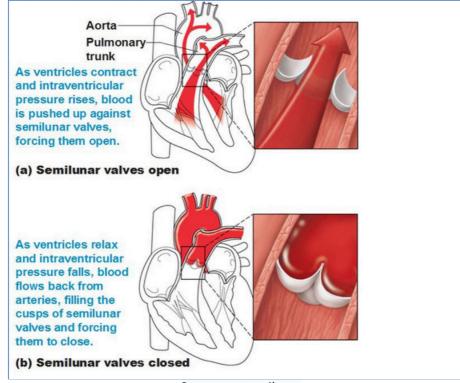
- **Contraction of Atria** 0
 - → IntraAtrial Pressure Increases §
 - § \rightarrow Blood pushed into Ventricles through AV-Valves
- o Note: Ventricles are already 70% full from passive Venous Filling.
- At End of Atrial Systole, Ventricles have EDV (End Diastolic Volume) ≈ 130mL 0



PHASE 2- Ventricular Systole:

0 a) AV Valves Close:

- § Ventricular Pressure Exceeds Atrial Pressure \rightarrow AV Valves shut
- **Brief period of 'IsoVolumetric' Contraction:**
 - Where the ventricular pressure rises, but Volume Stays Constant.
 - The beginning of ventricular systole
 - All valves are still *Closed*.

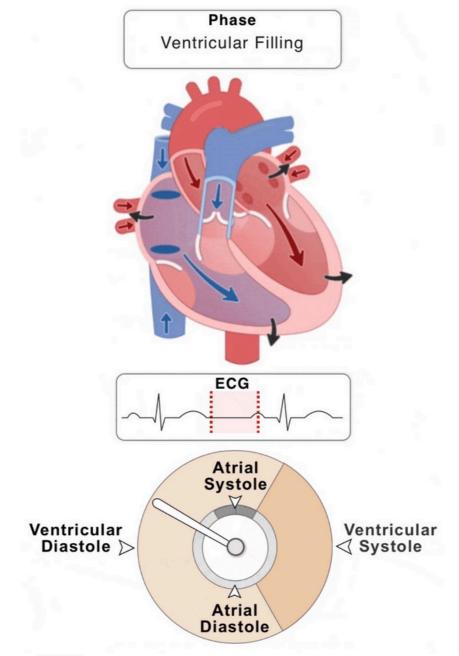


$_{\odot}$ b) Semilunar Valves Open:

- § Ventricular Pressure Exceeds Aortic/Pulm Pressure \rightarrow Blood Ejected
 - ≈80mL of blood ejected each time (Stroke Volume)
 - Ventricular Volume Decreases.

$_{\odot}$ c) Semilunar Valves Close:

- § Ventricular Pressure then falls Below Aortic/Pulm Pressure \rightarrow Semilunar Valves Close.
 - Sudden closure of SemiLunar Valves causes the Dicrotic Notch:
 - 0 Result of Elasticity of the Aorta & Blood Rebounding off the Closed SL Valve.
 - 0 Causes a slight peak in Aortic pressure
- § **Note:** Ventricles never *fully* empty:
 - ESV (End Systolic Volume) = Amount of blood left in ventricles \rightarrow 50mLs.


www.getdirectionglobal.com

Source: antranik.org

PHASE 3- Ventricular Diastole:

- Blood \rightarrow from Atria into Ventricles §
- § (NOTE: Passive filling from venous return is responsible for 70% of ventricular filling.)

Source: https://www.humanbiomedia.org/cardiac-cycle-lesson/

CARDIO-DYNAMICS:

CARDIO-DYNAMICS:

Cardiac Output:

- Useful when examining cardiac function over time.
 - Determined by 2 Things:
 - o 1- Stroke Volume....&
 - o 2- Heart Rate

Cardiac Output(mL/min) = Stroke Volume X Heart Rate

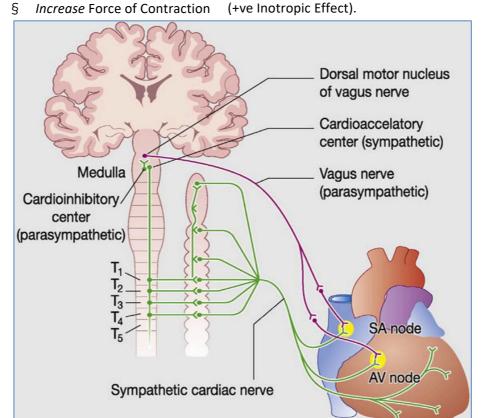
- Average CO ≈ 5L/min (Ie: The entire blood supply circulates once per minute)
- Cardiac Output Is regulated such that peripheral tissues receive adequate blood supply.

HEART RATE:

- Depends on Tissue-Satisfaction with Nutrients & O2.
- Terms:
 - o **BradyCardia:** HR *Slower* than normal. (too fast \rightarrow stroke volume & CO suffers) o **TachyCardia:** HR *Faster* than normal.

5 Things That Affect Heart Rate:

- <u>1- Alterations in SA-Node Firing:</u>
 - o SA-Node is the Pacemaker.....therefore:
 - § Change its rate \rightarrow change Heart Rate (\rightarrow change Cardiac Output)


- 2- Autonomic Nervous System:

o Parasympathetic: (Vagus Nerve)

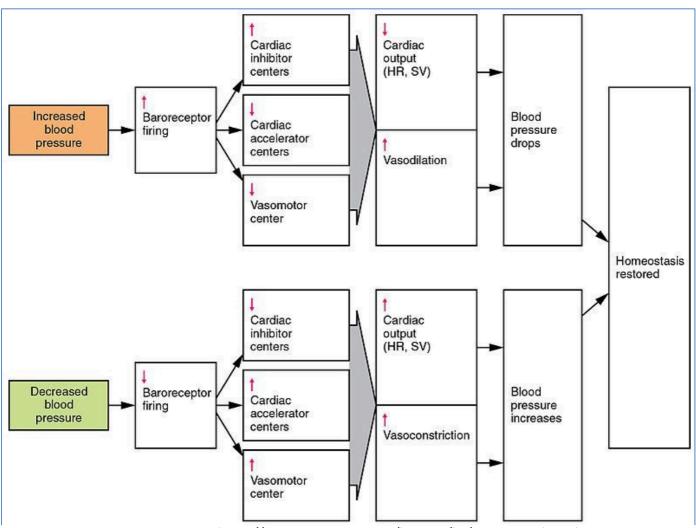
- § Decrease Heart Rate
- (-ve Chronotropic Effect) (-ve Dromotropic Effect)
- § Increase AV-Node Delay (-§ NOTE: ONLY A TINY FEFECT ON CC
- § NOTE: ONLY A TINY EFFECT ON CONTRACTILITY

o Sympathetic: (Sympathetic Chains)

- § Increase Heart Rate
- (+ve Chronotropic Effect) (+ve Inotropic Effect).

Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Anatomy-of-thewww.getdirectionglobal.com 8015000900

3- Reflex Controls:


o Bainbridge Reflex (Atrial Walls):

§ Where an \uparrow Venous Return \rightarrow \uparrow Heart Rate

- § (Stretch of Atrial Walls \rightarrow Stretch Receptors \rightarrow Sympathetic NS $\rightarrow \uparrow$ HR.)
- § Responsible for 40-60% of HR increases.
- o ChemoReceptor Reflex:
 - § \downarrow Low O2 or \uparrow CO2 in Peripheral-Tissue $\rightarrow \uparrow$ HR & \uparrow Resp Rate
- **O** BaroReceptor Reflex (Aortic & Carotids):
 - § Where an $\uparrow BP \rightarrow \downarrow HR \& \downarrow Contractility (+ Vasodilation)$
 - § 2 Main Baroreceptors:
 - Aortic → Vagus Nv. → CV Centre(medulla/pons)
 - **Carotid** → Hering's Nv. → CV Centre(medulla/pons)

§ Constantly responds to Blood Pressure Changes

- (via stretch in vessel walls)
- More Stretch = More Firing:.leads to:
 - o Parasympathetic Activation
 - o Sympathetic De-activation
- § Receptors Never Silent constantly signalling
- § Quick to respond
- § In Hypertension \rightarrow receptors recalibrate to the higher BP.
- § Changes HR accordingly

CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

4- Atrial Node Stretching (Similar to Baroreceptor Reflex, but in the Atrium):

- o Venous Return Fills Atria With Blood.
- § When Venous Return \uparrow , Atrial Walls Stretch \rightarrow Stretches SA-Node.
- ^o Stretching of SA-Node Cells \rightarrow More Rapid Depolarisation $\rightarrow \uparrow$ HR
- Responsible for 15% of HR increases.

Influenced by:

- § Arterial Pressure
- § Peripheral Compliance
- § Local Blood Flow
- § Capillary Exchange

5- Chemical Regulation:

- o Hormones:
 - § Adrenaline
 - § Thyroxine
 - § Insulin
- o lons: Na+
 - § K+
 - § Ca2+
 - §

- (Other Factors):

- $_{\odot}$ Age (Old \rightarrow Lower Resting-HR)
- $_{\odot}$ Gender (Females → Higher Resting-HR)
- _O Physical Fitness (Fit \rightarrow Lower Resting-HR)
- _O Temperature (Hot \rightarrow Higher Resting-HR)

STROKE VOLUME:

- o Blood output per heart-beat.
- o Useful when examining the efficiency of a *single* cardiac cycle.

Stroke Volume (SV) = End Diastolic Volume (EDV) – End Systolic Volume (ESV)

• Therefore, Stroke Volume is **↑'d by**:

- § ↑ Ventricular Filling Time (Duration of Ventricular Diastole)
- § ↑ Venous Return
 - \downarrow Arterial BP (A High Arterial BP \rightarrow harder to eject blood \rightarrow ESV Increases)
- § \uparrow Force of Ventricular Contraction.

2 Things That Affect Stroke Volume:

8

§

<u>1- PreLoad</u>: Degree of Stretch of Heart Muscle:

- o The degree of *Stretching* of the Heart Muscle during Ventricular Diastole.
 - § Caused by amounts of blood from venous return.
- o Influenced by:
 - § Arterial Pressure
 - **§** Peripheral Compliance
 - § Local Blood Flow (depending on the demands of those tissues)
 - § Capillary Exchange.
 - Preload ↑ as EDV↑. (Directly Proportional)

- ^o Affects % of actin/myosin contact in myocytes → Affects cross-bridge cycling:
 - § \rightarrow Affects muscle's ability to produce tension.

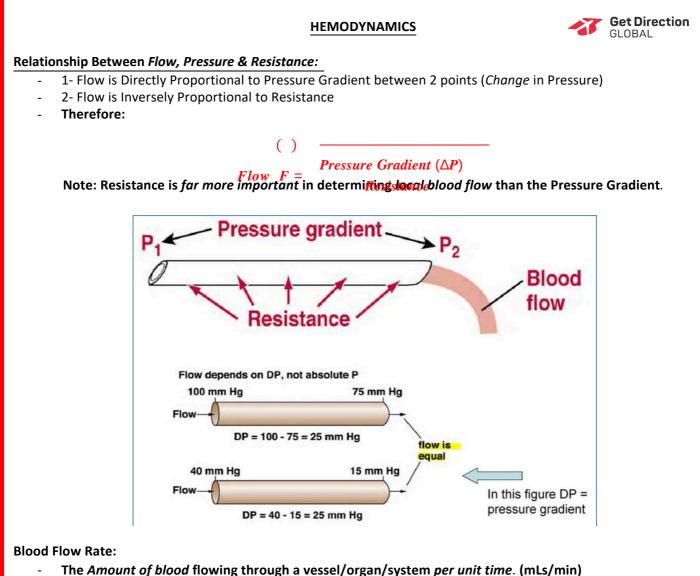
Preload Varies with demands placed on heart.

Contractility:

- § Inotropy
- § Force produced during contraction *at a given Preload*.
- § Influences End Systolic Volume (\uparrow Contractility = \downarrow ESV)

• 2- Afterload: Back Pressure Exerted by Arterial Blood:

- g The tension needed by Ventricular Contraction to Open Semilunar Valve.
 - § Ie: The pressure the heart must reach to eject blood.
- \uparrow Afterload = \uparrow ESV = \downarrow SV


Afterload is increased by anything that Restricts Arterial Blood Flow.

	Factors Affecting Stroke Volume (SV)		
	Preload	Contractility	Afterload
Raised due to:	 fast filling time increased venous return 	 sympathetic stimulation epinephrine and norepinephrine high intracellular calcium ions high blood calcium level thyroid hormones glucagon 	increased vascular restistance semilunar valve damage
	Increases end diastolic volume, Increases stroke volume	Decreases end systolic volume, Increases stroke volume	Increases end systolic volume Decreases stroke volume
Lowered due to:	 decreased thyroid hormones decreased calcium ions high or low potassium ions high or low sodium low body temperature hypoxia abnormal pH balance drugs (i.e., calcium channel blockers) 	 parasympathetic stimulation acetylcholine hypoxia hyperkalemia 	decreased vascular resistance
	Decreases end diastolic volume, Decreases stroke volume	Increases end systolic volume Decreases stroke volume	Decreases end systolic volume Increases stroke volume

CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons www.getdirectionglobal.com

HAEMODYNAMICS / HEMODYNAMICS

- o Determined by pressure gradient & resistance, NOT Velocity.
- Systemic Blood Flow = Cardiac Output (relatively constant)
 Specific Organ Blood Flow may vary widely due to its immediate needs.

Velocity of Flow:

- Velocity of Flow = SPEED of flowing blood. (mm/sec)
- Eg: A constricted vessel will have a lower flow rate, but a higher velocity of flow. (Ie: Garden hose)
- Note: Velocity tends to change by a greater magnitude than the change in Flow Rate.

Blood Pressure:

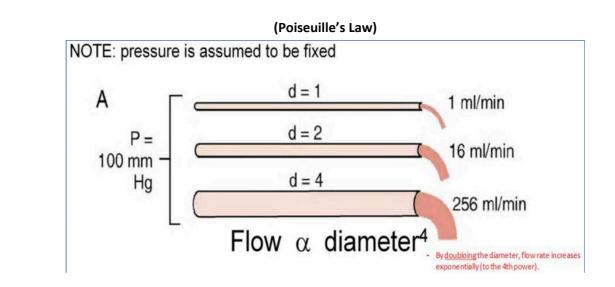
- The Pressure exerted on the vessel wall by contained blood. (mmHg)
- Decreases with distance from heart. (arterial system)
- Decreases with 10%+ decrease blood volume.
- Increases with vessel constriction (provided same blood volume)

Resistance:

- The amount of *Friction* blood encounters as it passes through the vessels.
 - 3 Factors Influencing Resistance:

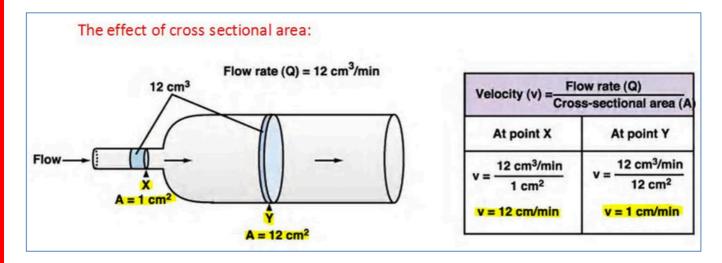
ξ

- o **Blood Viscosity** (\uparrow Viscosity = \uparrow Resistance) (Fairly Constant)
- o **Total Vessel Length** (longer vessel = \uparrow resistance) (Fairly Constant)
- o Vessel Diameter (thinner vessel = \uparrow resistance) (Frequently Changes)
 - Most Responsible for changes in BP
- Systemic Vascular Resistance = Combination of the Above Factors


www.getdirectionglobal.com

Effects of Vessel Diameter (Vasomotion) on Flow Rate:

- The *Flow Rate* is directly *proportional to* the *4th Power* of the *Vessel Diameter*.



- Ie: Small changes in vessel diameter \rightarrow Changes Flow Rate by an exponent of 4.

E ffe cts of V e sse I D ia m e ter (V a som o tion) on F low V e lo city :

- Flow Rate is inversely proportional to the vessel's cross-sectional area.
- le: An ' α ' x Increase in cross-sectional area \rightarrow Decreases Flow Velocity by a factor of ' α '.

BLOOD PRESSURE PHYSIOLOGY:

BLOOD PRESSURE IN DETAIL:

Factors Influencing Blood Pressure:

- Cardiac Output:
 - o 个Cardiac Output = 个 BP

Peripheral Resistance:

- o Causes backpressure in blood (arterial system)
- O Eg: In Obesity, peripheral resistance increases.
- Blood Volume:
 - o (assuming constant vessel diameters) \uparrow Blood Volume = \uparrow BP
 - o Its affect depends on vessel compliance

BP = Cardiac Output X Total Peripheral Resistance

Types of Blood Pressures:

- Systolic:
 - 0 Peak Aortic pressure reached during ventricular systole.
 - 0 A Function of:
 - § Peak *rate* of ejection
 - § Vessel wall compliance
 - § Diastolic BP
 - o Normal = 120mmHg

- Diastolic:

- 0 Lowest Aortic pressure reached during ventricular diastole, due to blood left after peripheral runoff.
- o A Function of:
 - § Blood Volume
 - § Heart Rate
 - § Peripheral Resistance

o Normal = 80mmHg

*Pulse Pressure:

O Pulse Pressure = Systolic Pressure - Diastolic Pressure

- o (Eg: 120mmHg 80mmHg)
- o Normal = 40mmHg

o If Lower – may be an indication of Aortic Stenosis or Atherosclerosis (slowed peripheral runoff)

- *Mean Arterial Pressure (MAP):
 - o MAP = Diastolic Pressure + 1/3(Pulse Pressure)
 - o *The Pressure that *Propels Blood to the Tissues* maintains *Tissue Perfusion* (see below sections). § Maintains flow through capillary beds
 - o Must be high enough to overcome peripheral resistance (if not blood doesn't move)
 - o Finely Controlled

3 Main Regulators of Mean Arterial Pressure (MAP):

- <u>1- Autoregulation (@ the Tissue Level):</u>

o Localised Automatic Vasodilation/constriction at the Tissue Level

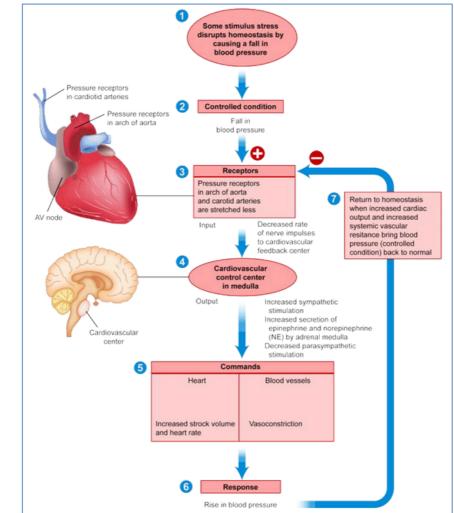
- § Allows Control of flow within a single capillary bed.
 - § Ensures perfusion of the 'Needy' Tissues

o Metabolic Controls: → Vasodilation:

- § Low Oxygen/Nutrient levels
- § Nitric Oxide
- § Endothelin
- § Inflammatory Chemicals: (histamine/kinins/prostaglandins)

o Myogenic Control: → Vasoconstriction:

- § Sheer Stress: Vascular smooth muscle responds to passive stretch (\uparrow vascular pressure) with increased tone.
 - Prevents excessively high tissue perfusion that could rupture smaller blood vessels.
- § Reduced stretch promotes vasodilation \rightarrow flow increases.


2- Neural Mechanisms:

o Vasomotor Centres (Medulla):

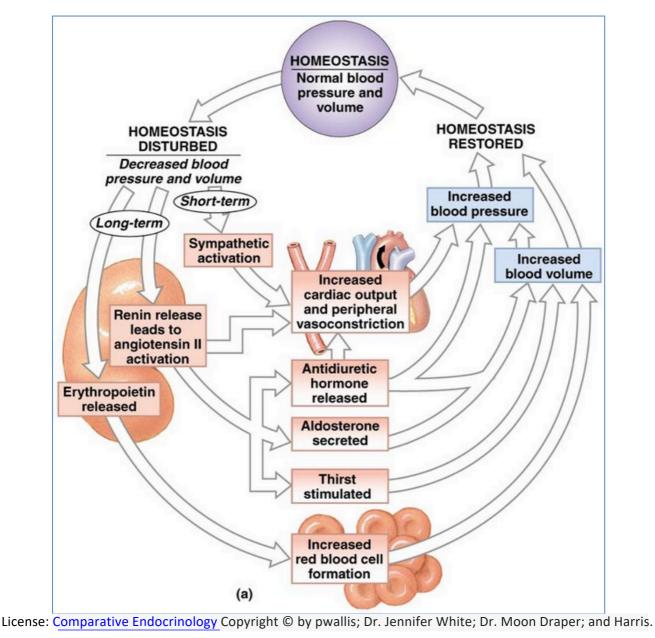
- § Take info from receptors:
 - Baroreceptors
 - (primarily)
 - Chemoreceptors (lesser degree)
 - § Transmit impulses via Sympathetic.NS:
 - \uparrow sympathetic activity = vasoconstriction = \uparrow BP
 - \downarrow sympathetic activity = vasodilation = \downarrow BP

o Cardiovascular Centres of the Autonomic Nervous System:

- § Sympathetic $\rightarrow \uparrow$ HR & Contractility $\rightarrow \uparrow$ MAP
- § Parasympathetic $\rightarrow \downarrow$ Heart Rate $\rightarrow \downarrow$ MAP

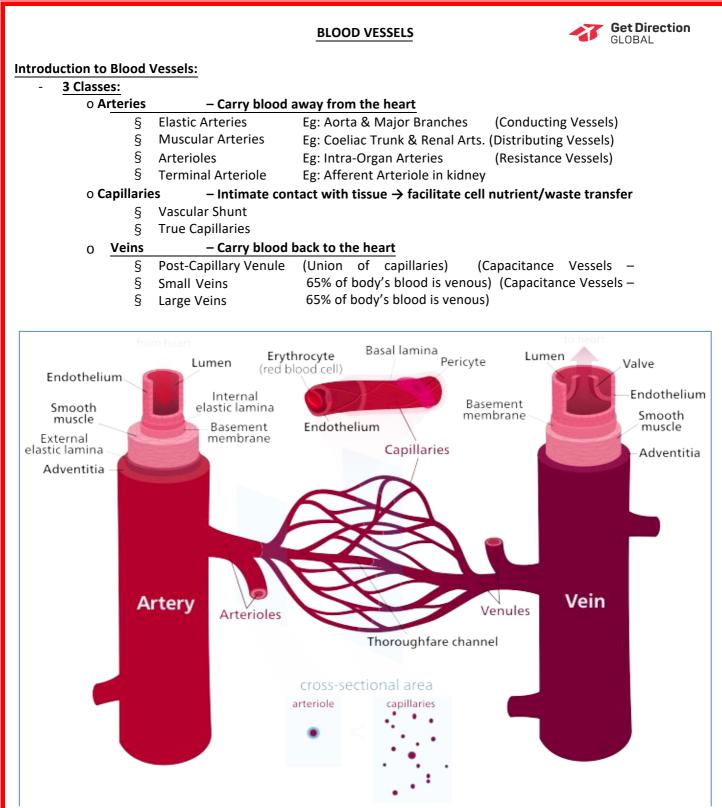
www.getdirectionglobalcom https://www.ck12.org/book/human-biology-circulation/section/7.18015000900

3- Endocrine Mechanisms (Kidney Level):

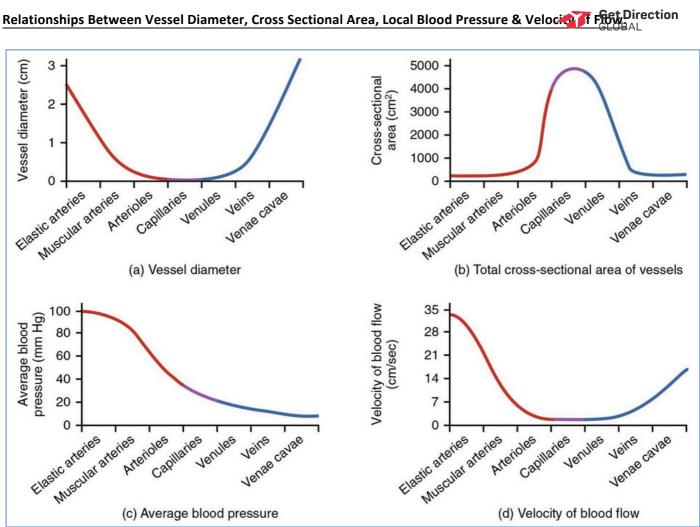

o More for Long Term BP & Blood-Volume regulation:

o ****Antidiuretic Hormone (ADH) – AKA. Vasopressin:**

- § Released due to *Low* blood *volume*
- § ADH \rightarrow Water Retention Increased $\rightarrow \uparrow MAP$
- O Angiotensin II:
 - § Released due to *Low* blood *pressure*
 - § Potent VasoConstrictor
 - § Increases Cardiac Output & Blood volume
 - § Angiotensin-II \rightarrow VasoConstriction $\rightarrow \uparrow$ MAP
 - § (NOTE: 'ACE' (Angiotensin I Converting Enzyme) activates it to Angiotensin II. Hence 'ACE-Inhibitors' are often used as *AntiHypertension* medicine)

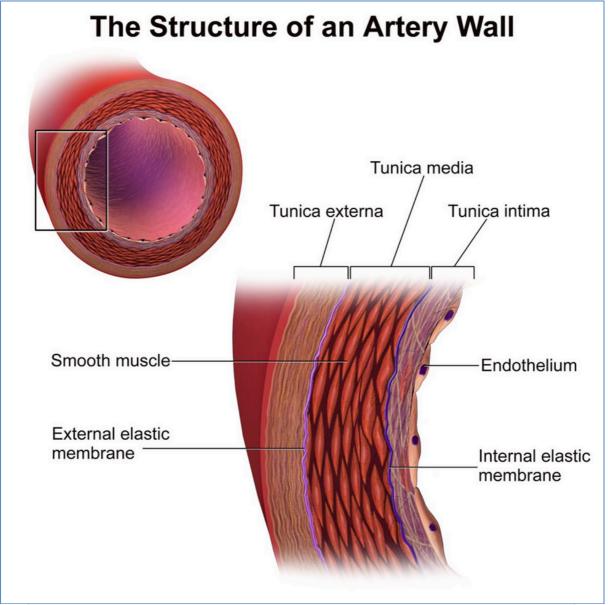

0 Erythropoietin:

- § Released due to Low Pressure & Low O2 Levels
- § Increases RBC production to increase Blood Volume.
- § EPO \rightarrow Haematopoiesis $\rightarrow \uparrow$ Blood Volume $\rightarrow \uparrow$ MAP
- **O** Natriuetic Peptides (Released by the heart):
 - § Released by the heart due to High Blood Pressure & Volume.
 - § \uparrow Stretch on Heart \rightarrow NP Release $\rightarrow \uparrow$ Diuresis \rightarrow Reduces BP & Volume.
 - S Also Inhibits ADH & Angiotensin II \rightarrow *Reduces BP & Volume*.

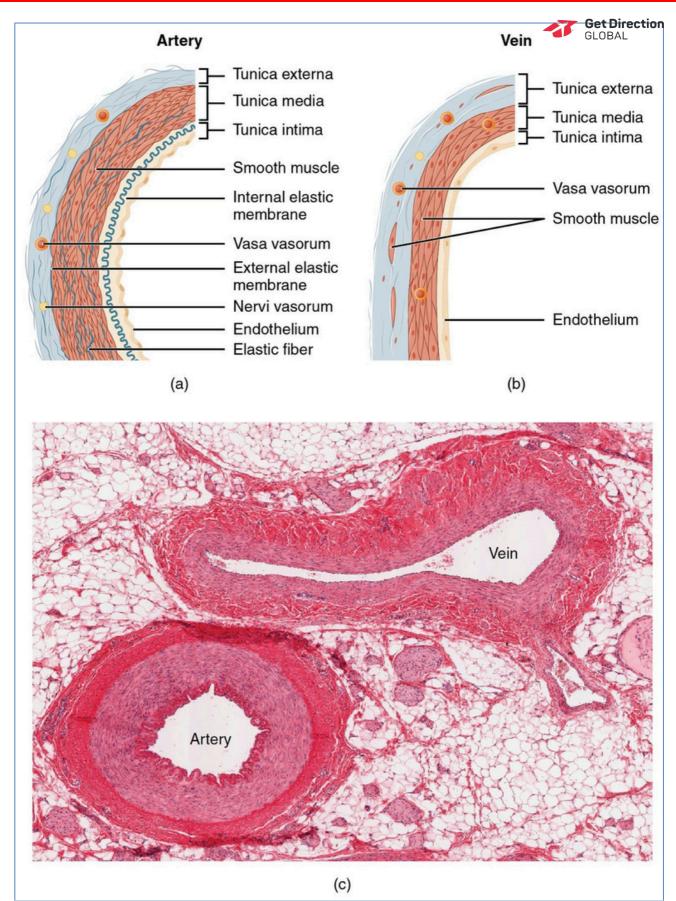


ANATOMY & PHYSIOLOGY OF BLOOD VESSELS

Kelvinsong, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons


CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

Blood Vessel Structure:



3-Layered Wall:

- o Tunica Intima:
 - § Ie: The layer in *intimate* contact with the blood (luminal)
 - § Consists of *The Endothelium* (Simple Squamous Epithelium)
 - § Larger vessels also have a *Sub-Endothelial Layer*
- o Tunica Media:
 - § Middle....& Thickest layer (Smooth Muscle & Elastin)
 - Circulating Smooth Muscle
 - Sheets of Elastin
 - § Regulated by Sympathetic Nervous System + Chemicals
 - § Contraction/Dilation Maintains Blood Pressure.
- O Tunica Externa:
 - § Outermost Layer (Loose collagen fibres)
 - § (NOTE: Also Contains Nerve Fibres, Lymphatics, and Vasa Vasorum (In larger vessels))

Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine

CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

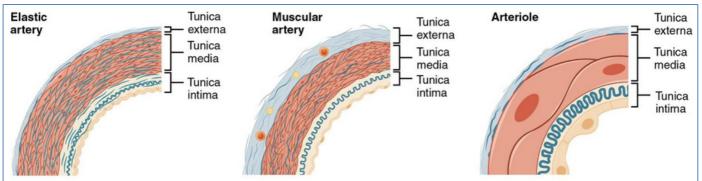
The Arterial System:

Get Direction

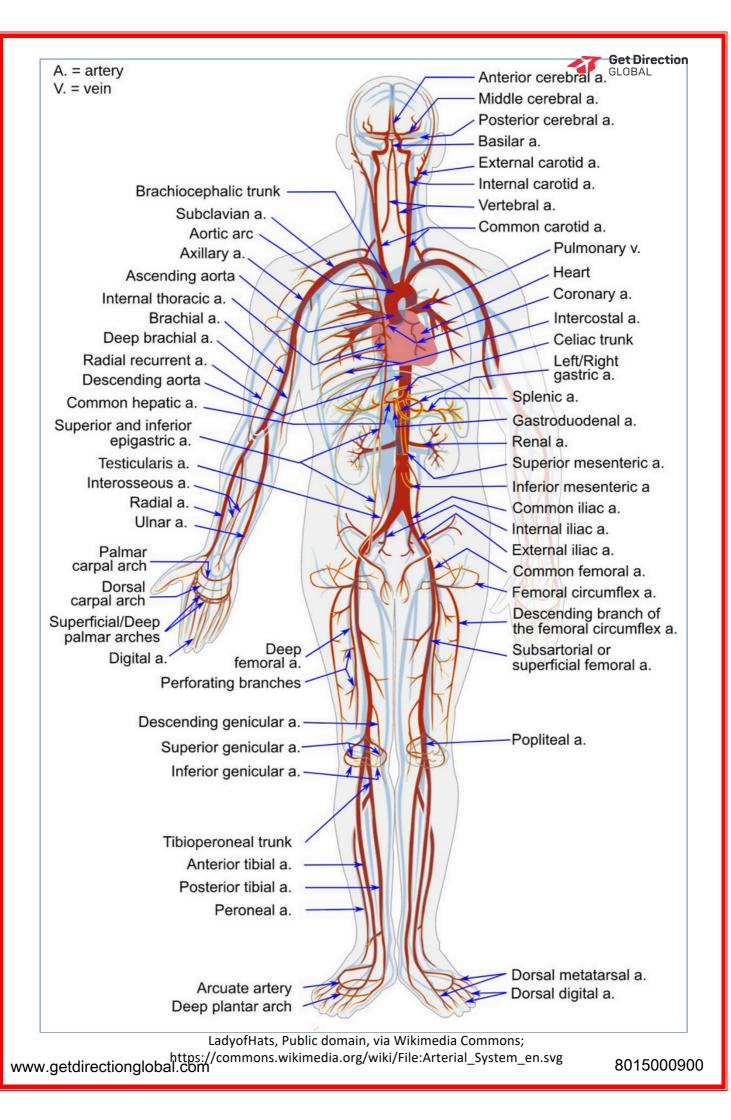
Elastic (Conducting) Arteries:

o The Aorta + its major branches

o Thick-Walled

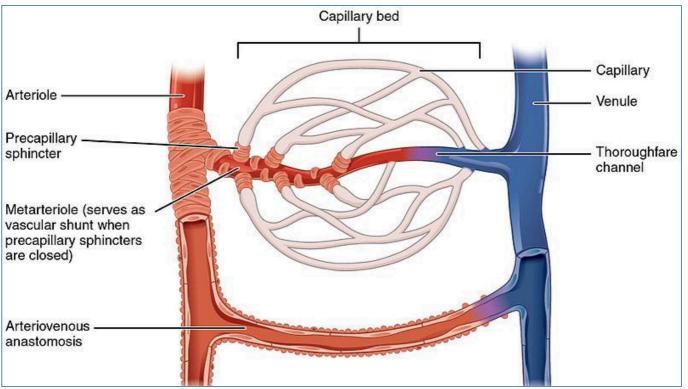

- o Large Lumen = Low resistance
- O Highest Proportion of *Elastin:*
 - § Withstands Pressure Fluxes
 - § Smoothens out Pressure Fluxes
 - § 'Stretch' = potential energy \rightarrow helps propel blood during diastole.
- Muscular (Distributing) Arteries:
 - O O Distal to Elastic Arteries
 - o Diantier booghto-specific body organs

Thickest Tunica Media:


- § Due to smooth muscle
- o Highest Proportion of Smooth Muscle:
- Are § active in vasoconstriction
- Are thersfore less *distensible* (less elastin)
- Arterioles:
 - o Smallest Arteries

o Larger Arterioles have all 3 Tunics (Intima/media/externa).....

- § Most of the Tunica Media is Smooth Muscle
- o Smaller Arterioles lead to capillary beds
 - § Little more than 1 layer of smooth muscle around the endothelial lining.
- o Autoregulation of Diameter:
 - § Controlled by:
 - Neural (electrical) signals
 - Hormonal signals (NorAdrenaline/Epinephrine/Vasopressin/Endothelin-1/etc)
 - Local chemicals
 - § Controls blood flow to Capillary Beds
 - When constricted tissues served are bypassed
 - When dilated Tissues served receive blood.
- 0 Biggest controller of Blood Pressure


CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

The Capillary System:

- Smallest blood vessels microscopic
- Thin, thin walls Tunica Intima Only Ie: Only 1 layer thick.
- Average length = 1mm
 - Diameter: The width of a single RBC.
 - 0 RBC's flow through capillaries in single file
 - o RBC's shape allows them to stack up efficiently against each other.
- Penetrate most tissues.
 - o (except tendons/ligaments/cartilage/epithelia)
 - Main Role:
 - o Exchange of Gases/Nutrients/Hormones/Wastes
 - O Exchange occurs between Blood & Interstitial Fluid.
- Capillary Beds:
 - o Capillaries are only effective in large numbers:
 - § Form networks called 'capillary beds'
 - o Facilitates '*Microcirculation':* Blood-Flow from an Arteriole \rightarrow Venule
 - § Consist of **2 Types of Vessels**:
 - Vascular Shunt:
 - o From Metarteriole → Thoroughfare Channel
 - 0 Short vessel directly connects Arteriole with Venule.
 - True Capillaries:
 - 0 The ones that actually take part in *exchange* with tissues.
 - o Usually branch off the *Metarteriole* (proximal end of vascular shunt)
 - 0 Return to the *Thoroughfare Channel* (distal end of vascular shunt)
 - **O** Precapillary Sphincters:
 - § Smooth muscle Cuffs
 - § Surround the roots of each true capillary (arterial ends)
 - § Regulates blood flow into each capillary
 - § Ie: Blood can either go through capillary or through the shunt.

o A Capillary Bed may be flooded with blood or bypassed, depending on conditions in that organ.

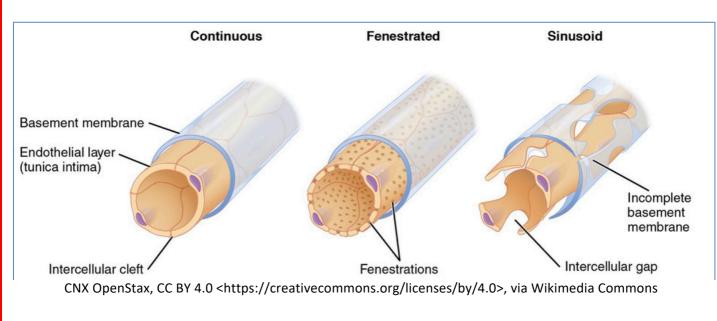
CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

3 Types of Capillaries:

O Continuous Capillaries:

- § 'Continuous' = uninterrupted endothelial lining.
 - Adjacent cells form *Intercellular Clefts*:
 - o Joined by incomplete-*tight-junctions*
 - o (Ie: Allow limited passage of fluids & solutes)
 - Note: in the brain, the *tight-junctions* are *complete* \rightarrow blood brain barrier.

O Fenestrated Capillaries:


§

ξ

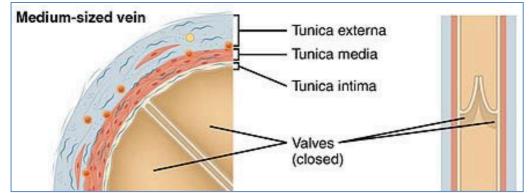
- Endothelial cells are riddled with oval pores (Fenestrations = windows)
 - Much more permeable to fluids & solutes than *continuous capillaries*.
 - Abundant wherever active absorption/filtration occurs.
 - le: Intestines
 - Kidneys
 - Endocrine organs (allow hormones rapid entry to blood)

O Sinusoids (Sinusoidal Capillaries):

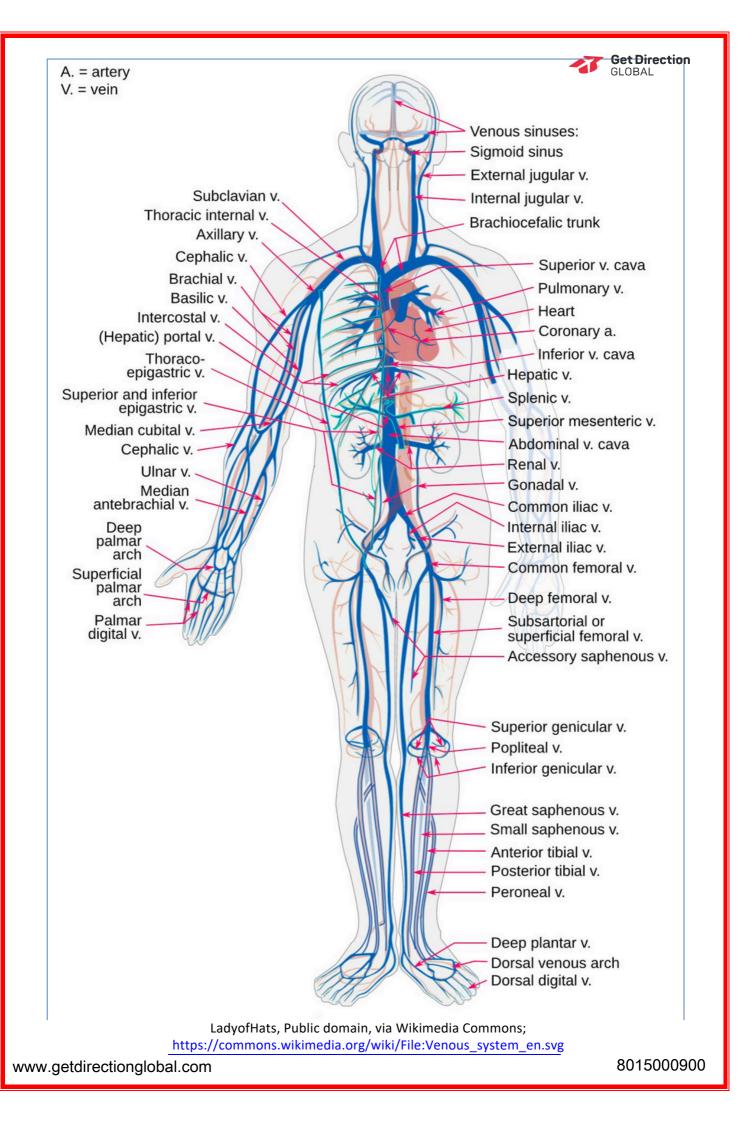
- § AKA "Leaky Capillaries"
 - Found ONLY in:
 - Liver
 - Bone Marrow
 - Lymphoid Tissues
 - Some Endocrine Organs
 - Large Irregularly-shaped lumens
- § Large Irregularly-sha
 § Usually fenestrated
- § 'Discontinuous' = interrupted by *Kupffer Cells*:
 - Remove & destroy bacteria
 - Intercellular clefts \rightarrow larger + have fewer tight junctions
 - Allow large molecules & leukocytes passage through to Interstitial Space.

The Venous System:

- Get Direction GLOBAL
- Vessels carry blood back towards the Heart. (From Capillary Beds)
- Vessels gradually increase in Diameter & Thickness towards the heart.
- 2 Types:
 - O Venules:
 - § Formed by union of capillaries (post-capillary venules)
 - § Consist entirely of Endothelium
 - § Extremely porous; Allows passage of:
 - Fluid &
 - White Blood Cells (migrate through wall into inflamed tissue)
 - § The larger venules:
 - Have 1or2 layers of smooth muscle (le: Tunica Media)
 - Have a thin Tunica Externa as well
 - O Veins:


§

- § Formed by union of Venules
- § 3 distinct Tunics (but walls thinner than corresponding arteries)
 - Thinner walls due to lower Blood Pressure


Tunica Media:

- Poorly developed
- Some smooth muscle
- Some elsastin
- Tend to be thin even in large veins.
- § Tunica Externa:
 - Heaviest layer (thicker than Media)
 - Thick longitudinal collagen bundles
 - Thick elastic networks
- § Lumens larger than corresponding arteries
 - The reason 65% of body's blood is in the veins.
 - Therefore Veins: aka "Capacitance Vessels"
- § Lower Blood Pressure than arteries:
 - Require structural adaptations to get blood → heart:
 - o Large lumen (low resistance)
 - o Valves
- § Venous Valves:
 - Folds of Tunica Intima (resemble Semilunar Valves)
 - Prevent blood flowing backward
 - Ensures unidirectional flow
 - Often have to work against gravity.
 - If Faulty:

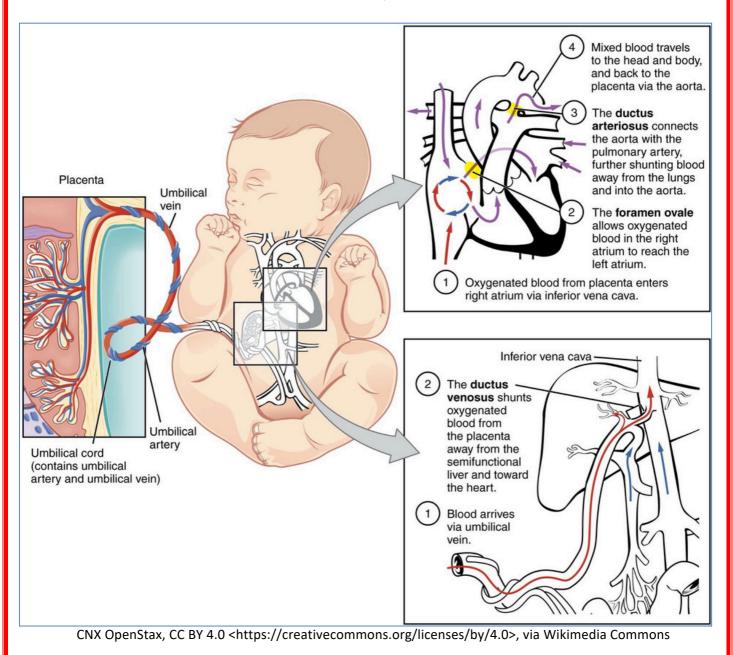
o Causes thrombosis (Eg: Varicose veins)

CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

Foetal Circulation:

"Bypasses" / "Shunts" of foetal circulatory system:

0 Ductus Venosus


- § Directs the oxygenated blood from the placental vein into inferior vena cava \rightarrow heart
- § Partially bypasses the liver sinusoids

o Foramen Ovale

- § An opening in the interatrial septum loosely closed by a flap of tissue.
- § Directs some of blood entering the right atrium into the left atrium \rightarrow Aorta.
- § Partially bypasses the lungs.

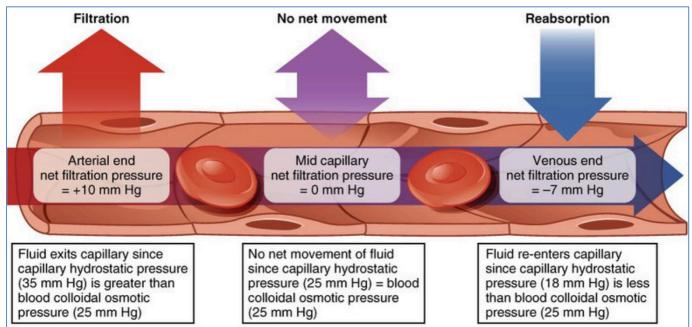
0 Ductus Arteriosus

- § Directs most blood from right atrium of the heart directly into aorta
- § Partially bypasses the lungs
- 0 **All of these "shunts" are occluded at birth due to pressure changes.
 - § NOTE: The Foramen Ovale can take up to 6 months to close.

Fluid Movements Across a Vessel:

§

Determined by the balance of 2 forces:


- **Capillary Hydrostatic Pressure:**
 - § The force the blood exerts against the capillary wall.
 - § Hydrostatic pressure = capillary blood pressure ≈35mmHgArterial End /15mmHgVenous End
 - Tends to force fluids through the capillary's *Intercellular Clefts* (between endothelial cells)
 - Capillary hydrostatic pressure drops as blood flows from arteriole \rightarrow venule.
 - *Net Hydrostatc Pressure = Capillary Hydrostatic Pressure Interstitial Hydrostatic Pressure.*
 - Note: Interstitial Hydrostatic Pressure ≈ 0mmHg

o Colloid Osmotic Pressure:

- § Opposes hydrostatic pressure
- § Due to large, non-diffusible molecules (Plasma Proteins) drawing fluid into capillaries.
- § Typically ≈25mmHg
 - Relatively constant at both Arterial & Venous ends

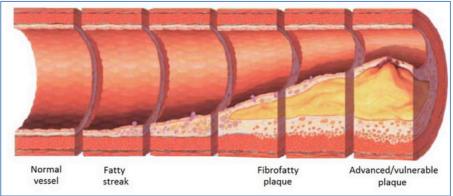
Net Osmotic Pressure = Capillary Osmotic Pressure – Interstitial Osmotic Pressure.

- Note: Interstitial Osmotic Pressure ≈ 1mmHg
- Hence Fluid is Forced Out @ Arterial End & Reabsorbed @ Venous End
- The *amount* of fluid forced out determined by the balance of net Hydrostatic & Osmotic forces.
 o le: *Net Filtration Pressure = Net Hydrostatic Pressure Net Osmotic Pressure*

CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

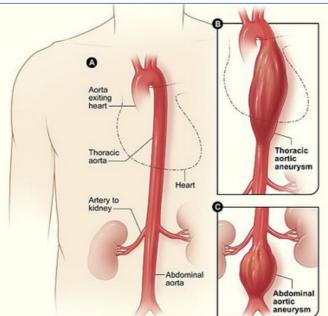
Oedema:

- Abnormal accumulation of fluid in the Interstitial Space = Ie: *Tissue Swelling*
- **Caused by:** increase in Flow of Fluid \rightarrow Out of Vessel OR Lack of Re-Absorption \rightarrow Into Blood Vessel
- Usually reflects an imbalance in Colloid Osmotic Pressure on the 2 sides of the Capillary Membrane.
- o Eg: Low levels of plasma protein (reduces amount of water drawn into capillaries.
 - **Contributing Factors:**
 - O High BP (Hydrostatic Pressure):
 - § Can be due to incompetent valves...OR
 - § Localised Blood Vessel Blockage...OR
 - § Congestive Heart Failure (Pulmonary Oedema due to blockage in pulmonary circuit)...OR
 - § High Blood Volume
 - o Capillary Permeability:
 - § Usually due to an Inflammatory Response


www.getdirectionglobal.com

Injuries to Blood Vessels

Eg: Atherosclerosis.


- o The formation of fatty plaques in the subendothelial layer
- o Fatty plaques begin to ulcerate

Adapted from a public domain image made by the US federal government.

0 Eg: Aneurysms:

- Elastic arteries can lose their elasticity
 - Due to having thinner walls, they're more prone to aneurysm (bulging & potentially rupturing)
 - § Results in pooling of blood --> eventual rupture.

Public domain image: http://www.nhlbi.nih.gov/health/health-topics/topics/arm/types.html

0 Eg: Dissections:

• Blood builds up between the layers of the wall & eventually press the vessel closed)

PHYSIOLOGY OF HYPERTENSION

W hat is Hypertension?:

- Consistent Diastolic of +90mmHg AND/OR
- Consistent **Systolic of +140mmHg**.

General Info:

-

- Is a Risk Factor For:
 - o Coronary Artery Disease
 - o Stroke Heart Failure
 - 0 Renal Failure
 - o Peripheral Vascular Disease
 - 0
- Usually Asymptomatic many don't know they have it.
 - Often Misdiagnosed Due To:

Factor	Effect on BP reading
Cuff - too wide/ long	lower than actual
Cuff - too narrow/short	greater than normal
Arm - above heart	lower than normal
Arm - below heart	greater than normal
Arm - unsupported	greater than normal
Respiration rate	Lower during inspiration
"White coat" phenomenon	much greater than normal
smoking/caffeine/activity 30 min. prior to reading	greater than normal

Classifications (In Adults):

O Different Classes Based on BP Ranges:

Category	Systolic BP	Diastolic BP	% Population	
Normal	<130	<85	▲ 83	
Pre-Hypertensive	130-139	85-89	•	
Stage 1 Hypertension	140-159	90-99	13.5	
Stage 2 Hypertension	160-179	100-109	2	
Stage 3 Hypertension	180-209	110-119	•	
Stage 4 Hypertension	≥210	≥120	1	

2 Types of Hypertension:

(Based on Aetiology.)

1- Primary (Essential) Hypertension:

- 90-95% of cases 0
- No specific cause. 0
- But Related to: 0
 - ξ Obesity
 - § **↑**Cholesterol
 - § Atherosclerosis
 - § ↑Salt Diet
 - § Diabetes
 - § Stress
 - § Family History
 - ξ Smoking

Diastolic Hypertension: 0

- **Elevated Diastolic Pressure** ξ
- § Relatively Normal Systolic (or slightly elevated)
- § Mostly Middle-Aged Men

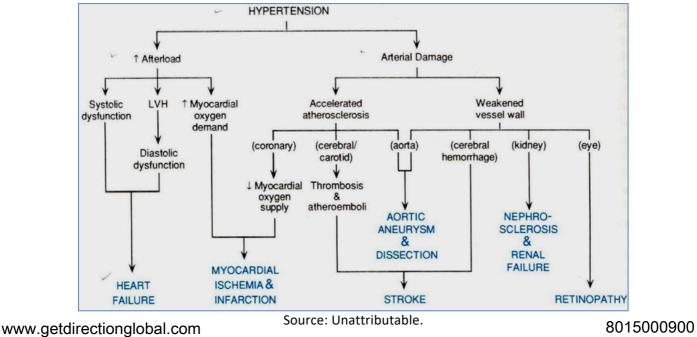
Isolated Systolic Hypertension: 0

- § Elevated Systolic Pressure
- § Normal Diastolic Pressure
 - Ie: High Pulse Pressure
- § § In Older Adults (60yrs+):
 - May be due to reduced compliance of the aorta with increasing age.

In Younger Adults (17-25):

- May be due to Overactive Sympathetic NS $\rightarrow \uparrow$ Cardiac Output
- Or Congenitally Stiff/Narrow Aorta •

2- Secondary (Inessential) Hypertension:


5-10% of cases 0

0

- Secondary to Another Diseases Eg:
- Renal Disease. §
 - **Endocrine Disorders** §
 - § Pregnancy (Pre-Eclampsia) – in 10% of pregnancies. (@ 20wks of gestation)
 - Other –, Cancers, Drugs, Alcohol §

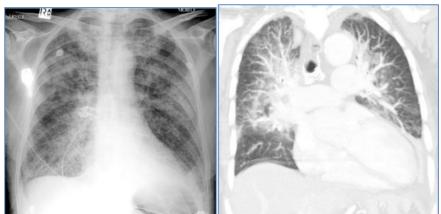
Organ Damage Caused By Hypertension:

Relationship between *Degree* of hypertension & *Degree* of Complications.

Get Direction GLOBAL

Heart:

- $_{\odot}$ $\,$ Increased Afterload:
 - § \uparrow Workload of Heart $\rightarrow \uparrow$ Afterload \rightarrow Pumps Harder \rightarrow Hypertrophy \rightarrow Failure
- _ L-Vent. Hypertrophy:
 - § To compensate for higher workload
 - § \rightarrow Compromised L-Ventricular Volume $\rightarrow \downarrow$ Stroke Volume $\rightarrow \downarrow$ Cardiac Output



Patrick J. Lynch, medical illustrator, CC BY 2.5 < https://creativecommons.org/licenses/by/2.5

- Lungs:

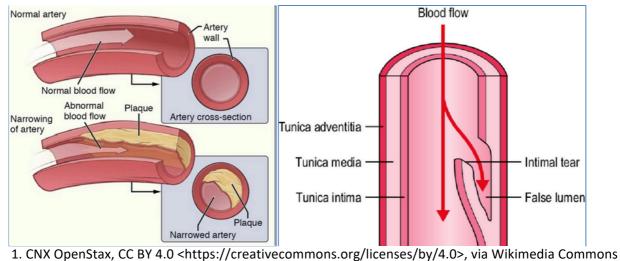
o Pulmonary Congestion:

- o Backing up of blood in Pulmonary Circuit.
- o Why: \uparrow BP = \uparrow Aortic-BP = \uparrow Afterload = \downarrow SV = \uparrow ESV = \downarrow Pulmonary Blood Flow

Frank Gaillard, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0
 Hellerhoff, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0

- CerebroVascular:

- o Stroke Typically Intracerebral Haemorrhage
- 0 Rupture of Artery/Arterioles in brain



www.getdirectionglobal.com

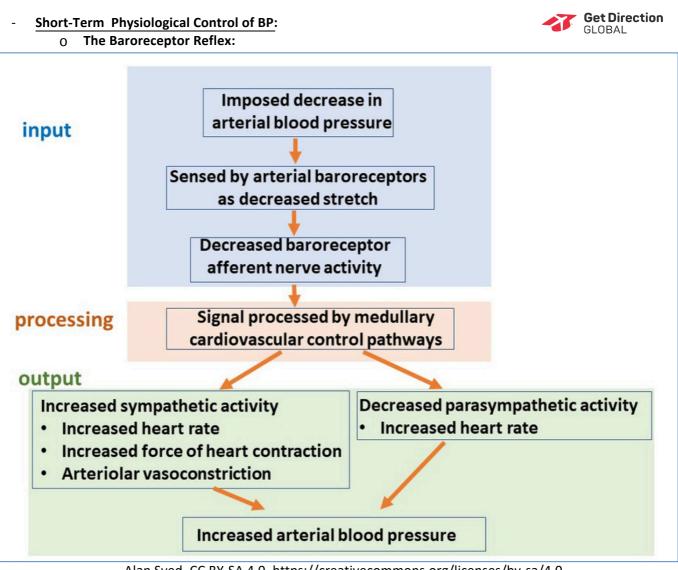
Aorta/Peripheral Vascular:

o Arterial Mechanical Damage (Eg: Aneurysms/Dissecting Aneurysms)

o Accelerated Atherosclerosis

2. Adapted from McKeeson Health Solutions 2002

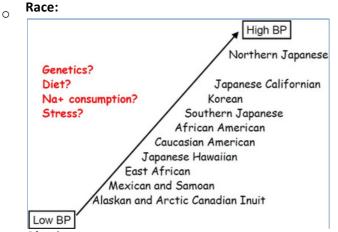
Kidneys:


- o Nephrosclerosis (hardening of kidney blood vessels)
- o Renal Failure

Mikael Häggström, CCO, via Wikimedia Commons; https://commons.wikimedia.org/wiki/File:Gross_pathology_of_nephrosclerosis.jpg

Get Direction

GLOBAL


Alan Sved, CC BY-SA 4.0, https://creativecommons.org/licenses/by-sa/4.0

Risk Factors Of Hypertension:

O Age:

- § BP normally increases with age.
 - Baby: 50/40
 - Child: 100/60
 - Adult: 120/80
 - Aged: 150/85 (quite normal)
- § Due to Loss of Elasticity of Blood Vessels with age Compliance \downarrow .
- § & Atherosclerosis

- O Obesity:
 - § Fatty Diet \rightarrow Atherosclerosis
 - § Body Fat \rightarrow kms more vessels $\rightarrow \uparrow$ Peripheral Resistance \rightarrow Hypertension
 - § Physical Weight of fat may impede venous return
 - § Kidney Dysfunction \rightarrow Loss of long-term BP (Blood Volume) Control.

O Excess Na+ Intake:

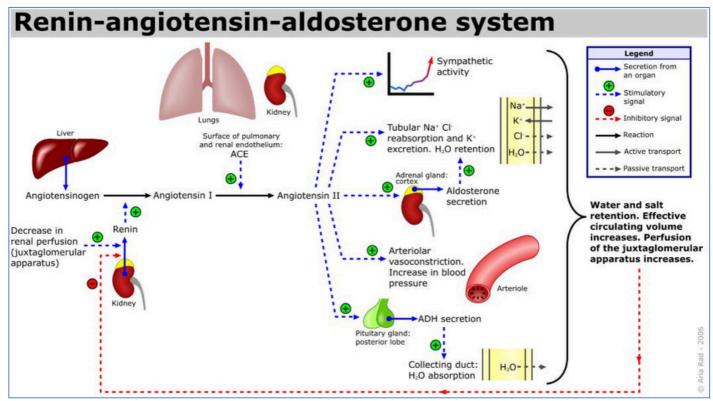
- **§** If Normal Kidney Function:
 - Na+ intake → Slight BP increase (due to fluid retention)
 - But *Excess* Na+ & H2O excreted by kidneys \rightarrow BP returns to normal.
- **§** If Impaired Kidney Function:
 - Na+ intake \rightarrow Larger BP increase...
 - Because Excess Na+ & H2O Not excreted by kidneys (less efficiently)

- Basic Hypertension Treatment Plan:

	Lifestyle Modification — Altered BP — Continue	
	Allow 6-12 months	
	Inadequate BP change	
	$ \begin{array}{c} & \\ \hline \text{Initiate Drug Treatment} \\ \hline \text{Diuretics or } \beta \text{ blockers} \\ \hline \text{Other drugs as required} \end{array} $	
	Maintain lifestyle modification	
	Inadequate BP Changes	
	Increase dose/Change drug/Add drug \rightarrow Altered BP \rightarrow Continue	
	Maintain lifestyle modification	
www.getdirectio		8015000900

- AntiHypertensive Drug Mechanisms:

- **O** Diuretics:
 - § Increases urination $\rightarrow \downarrow$ Blood Volume
 - § Aim = To reduce workload on heart by reducing preload


o Sympatholytics:

- § Reduces Sympathetic Activity (Prevents \uparrow HR/ \uparrow Contractility = Decrease in CO)
- § Eg: 'Beta-Blockers'.
- **O** Vasodilators:
 - § Reduce Peripheral Resistance
 - $\S \rightarrow$ Reduce Afterload
 - $\S \rightarrow$ Reduce Workload on Heart.

O Renin-Angiotensin Antagonists (ACE Inhibitors):

§ Decreases effects of Renin-Angiotensin System:

- Decreases Sympathetic Drive
- Decreases Vasoconstriction
- Decreases Fluid Retention
- Decreases Preload
- Decreases Afterload

A. Rad (me), CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons

PHYSIOLOGY OF SHOCK

SHOCK:

W hat is Shock?:

Profound Haemodynamic/Metabolic Disorder due to Inadequate Blood Flow & O2 Delivery.

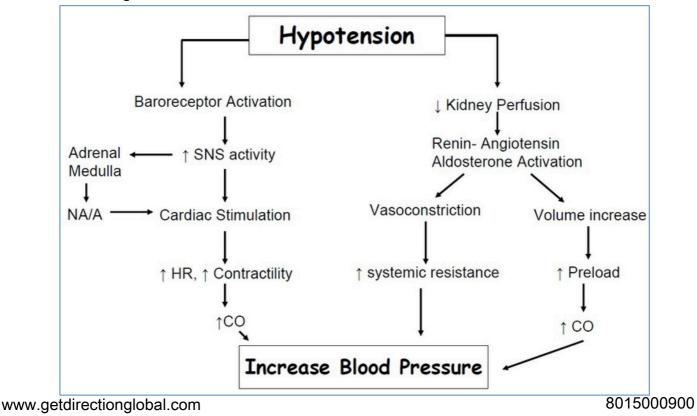
Common Causes of Shock:

- Hypovolemic Change:

- o Severe Dehydration
- o Haemorrhage
- Cardiogenic Change:
 - O Heart Failure (heart isn't getting enough blood out)
 - o ↓Venous Return

- Distributive Alteration:

- o Excessive metabolism le: Even a normal CO is inadequate.
- o Abnormal Perfusion Patterns Ie: Most of CO perfuses tissues other than those in need.
- o Neurogenic Shock Ie: Sudden loss of Vasomotor Tone \rightarrow Massive VenoDilation.
- 0 Anaphylactic Shock Drastic Decrease in CO & BP due to Allergic Reaction
- o Septic Shock Disseminated bacterial infection in Body \rightarrow Extensive Tissue Damage.


3 Stages of Shock:

1- Non-Progressive:

O Stable, not self-perpetuating.

o Symptoms:

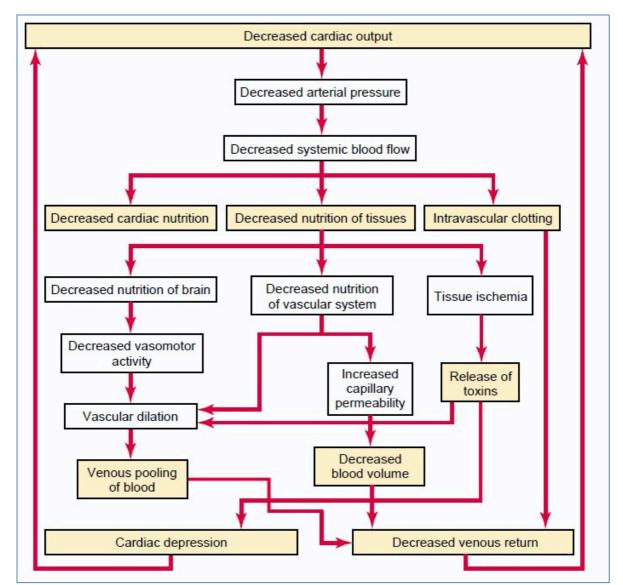
- § Hypotension (Low BP)
- § Tachycardia (High HR body's attempt to compensate for poor perfusion)
- § Tachypnoea (High Breathing-Rate Phrenic Nerve Stimulation Diaphragm)
- § Oliguria (Low Urine Production by Kidney)
- § Clammy Skin
- § Chills
- § Restlessness
- § Altered Consciousness
- § Allergy symptoms (if anaphylaxis)
- o The Body's Compensatory Mechanisms (below) will prevail without intervention.
 - § Aim to increase BP:

2- Progressive Stage:

Unstable, vicious cycle of Cardiovascular Deterioration – Self-Perpetuating.

o Compensatory Mechanisms are insufficient to raise BP.

o Perfusion continues to fall \rightarrow Organs become *more lschemic* (Incl: Heart \rightarrow Failure)


- § Cardiac Depression (due to O2 Deficit to Heart)
 - Vasomotor Failure (due to O2 Deficit to Brain)
- § § "Sludged Blood" (Viscosity \uparrow . – Harder to move)
- § Increased Capillary Permeability

o Symptoms:

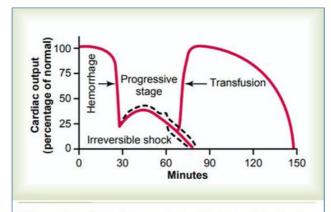
- Beginning of organ failure §
- ξ Severely Altered Consciousness
- § Marked *Bradycardia* (initially tachycardic – but now the body is giving up)
- § Tachypnea (Fast Breathing) with Dyspnea (No breathing)
- § Cold, lifeless skin
- § Acidosis - (CO2 equation affected)

o Treatment:

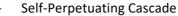
- Identify & Remove Causative Agents §
- Volume Replacement for Hypovolemia §
- § If Septic Shock: Antibiotics
- Sympathomimetric Drugs: If Neurogenic Shock (loss of vasomotor tone -vasodilation) §
- Fatal if untreated. n

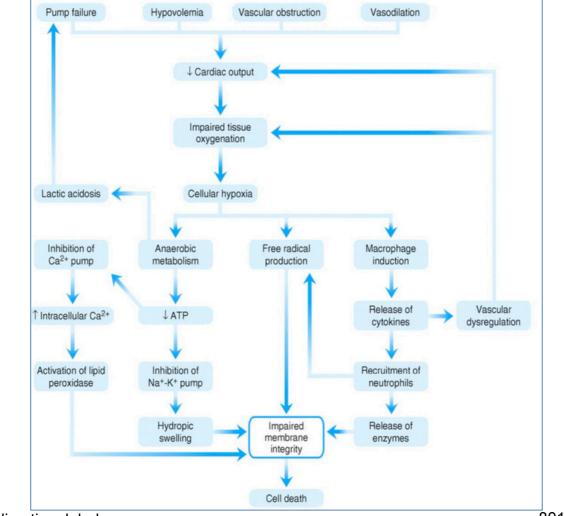
Abdel-Sater, Khaled. (2011). Physiological Positive Feedback Mechanisms. nwpii.com/ajbms. 3. 10.5099/aj110200145.

3- Irreversible Stage:


Advanced stage where the body is irrecoverable. 0

- o Usually any form of therapy is ineffective.
 - Eg: Transfusion is ineffective because the tissue/organ damage is too advanced. §


o Symptoms:


- Organ Dysfunction (Renal/Cardiac/Pulmonary/CNS) §
- § Failure Renal Heart Failure
- § Severely compromised CO & BP Worsening Acidosis
- § Ischaemic Cell Death Coma
- §
- §
- §

Shock-Induced Cell Death _

www.getdirectionglobal.com

PHYSIOLOGY OF MYOCARDIAL ISCHAEMIA / ISCHEMIA

MYOCARDIAL ISCHAEMIA

Get Direction GLOBAL

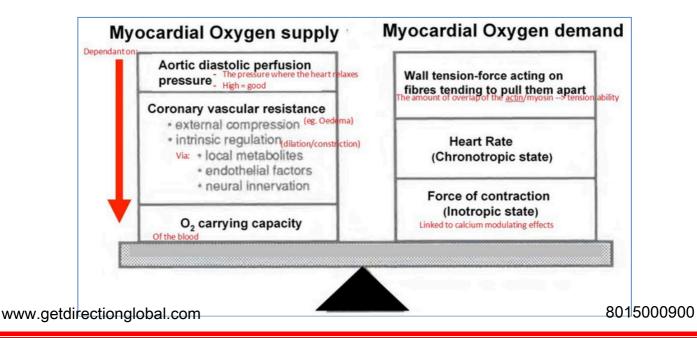
W hat is 'Ischaem ia':

- = Restraint of Blood (Ie: Insufficient Blood)
- Leads to Imbalance Between Oxygen Supply & Demand.
- Oxygen Supply Increased By:

o **↑Coronary Blood Flow**:

- § **Aortic, Diastolic Perfusion Pressure:**
 - Aortic Pressure During L-Ventricular Diastole
 - If High $\rightarrow \uparrow$ Coronary Perfusion
 - Influenced by:
 - o Hypotension
 - o Aortic Regurgitation

§ **↓Coronary Vascular Resistance:**


- Resistance to Coronary Blood Flow
- Depends on Vascular Diameter...
- Influenced by:
 - o External Compression (Eg: Oedema)
 - O Intrinsic Regulation (Dilation/Constriction).
 - o Metabolites
 - o Neural

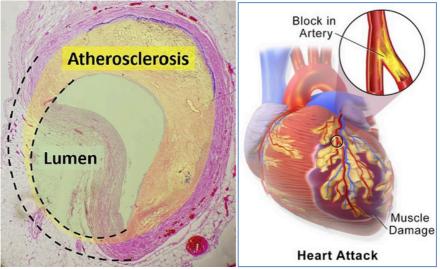
o & 个O2-Carrying Capacity of Blood:

- § Influenced By:
 - Hb Saturation
 - Hb Levels (Anaemia)
 - Blood pH
 - CO Poisoning
 - Lung Disease

• Oxygen Demand – Increased By:

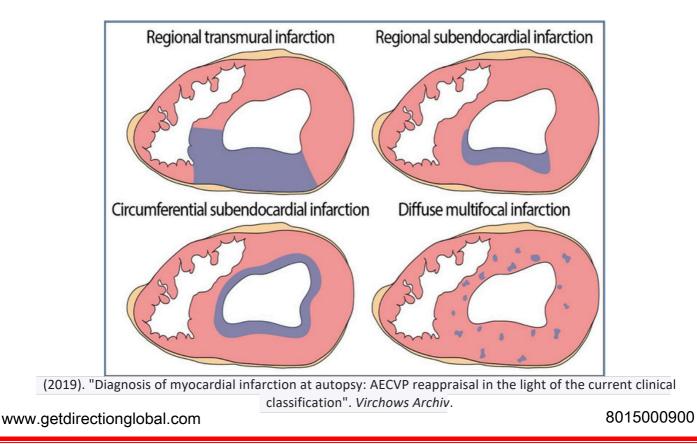
- o 个Wall-Tension Force:
 - § **↑Preload (Degree of Stretch of Myocardium):**
 - The degree of *Stretching* of the Heart Muscle during Ventricular Diastole.
 - [§] ↑Afterload (Back Pressure Exerted by Arterial Blood):
 - The tension needed by Ventricular Contraction to Open Semilunar Valve.
- o ↑Heart Rate (Chronotropic State)
- o ↑Force of Contraction (Inotropic State)

*Ischaemia Vs. Hypoxia Vs. Infarction:


- Ischaemia: A 'FLOW' Limitation, Typically due to Coronary Artery Stenosis (Narrowing)
- **Hypoxia:** An 'O2' Limitation, Typically due to High-Altitude/Respiratory Insufficiency/etc.
- Infarction: Irreversible Cell-DEATH, Typically due to sustained Ischaemia.
- Note: Ischaemia can lead to Hypoxia & Infarction.

M yocardial Ischaem ia:

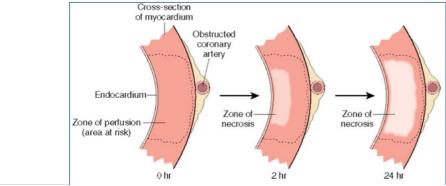
- Largest Cause of Deaths (50% of all deaths) in Western Society
- Mostly Attributed to \downarrow Coronary Blood Flow Due to Plaque/Thrombosis.
- Regional Ischaemia:
 - o Ischaemia Confined to Specific Region of Heart.
 - o Due to Plaque/Thrombosis


- Global Ischaemia (Rare):

- o Ischaemia of Entire Heart
- o Due to Severe Hypotension/Aortic Aneurysm/Open-Heart-Surgery

Mikael Häggström, CCO, via Wikimedia Commons

Blausen Medical Communications, Inc., CC BY 3.0 < https://creativecommons.org/licenses/by/3.0


What Happens During Myocardial Ischaemia:

Myocardial Damage:

o Inner-Myocardium will become Ischaemic first, then progress Outwards.

Adapted from Schoen FJ, Mitchell, RN: The heart. In Kumar V, et al, editors: Robbins and Cotran pathologic basis of disease.

Metabolic Changes – (Aerobic → Anaerobic):

- o ↑Lactate (Anaerobic Metabolism), ↓pH
- o ↓ATP, ↑ADP, ↑Pi
- o ↓Glycogen
- Pain:
- o Nociceptor (pain receptor) Activation \rightarrow Angina Pain
- _ Acute Ischaemic Attack:
 - o SNS & PNS Stimulation \rightarrow Tachycardia, Sweating, Nausea.....

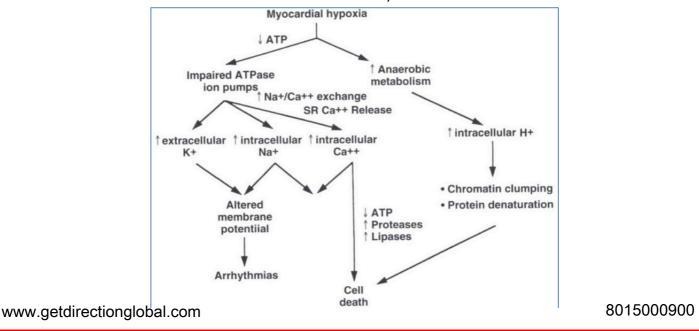
Reversible Cell Injury:

o \downarrow Blood-Flow $\rightarrow \downarrow$ Myocardial Relaxation (diastolic) \rightarrow Stiffening of L-Ventricle $\rightarrow \uparrow$ LVDP

Reperfusion Injury:

- o Cell Damage that occurs When Blood Supply is Restored (after being stopped)
- o Due to inflammation and oxidative damage through the induction of oxidative stress.

- Pulmonary Congestion:


o Stiffening of L-Ventricle & \uparrow LVDP \rightarrow \uparrow Pulmonary Vascular Pressure

- $\S \rightarrow$ Pulmonary Congestion
- $\S \rightarrow$ Shortness of Breath

- Ventricular Arrhythmias:

o Due to Myocyte Ion-Disturbances:

- § ↑ Extracellular K+
- § 个 Intracellular Na+
- § \uparrow Intracellular Ca+ ("Calcium-Loading") If Ischaemia is Prolonged \rightarrow Irreversible Damage
- $o \rightarrow Alters$ Conduction Patterns of the Heart $\rightarrow Arrhythmias$

Overview of Clinical Presentations of Myocardial Ischaemia:

- Ischaemic Heart Failure:
 - o Weakness of Heart Muscle ightarrow Difficulty Breathing + Peripheral Oedema

Angina Pectoris:

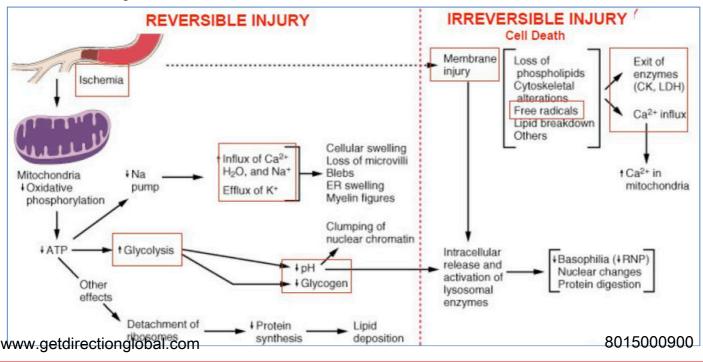
- o Substernal/Precordial Chest Pain Due to Myocardial Ischaemia \rightarrow No Cell Necrosis o Pain Usually lasts up to 15min.
- O 3 Subtypes:
 - **S** Stable Angina (Typical):
 - Angina-Pain During Exertion/Stress
 - No Permanent Injury
 - ST-Depression (Indicates Subendocardial Ischaemia)
 - Treated with Vasodilators
 - **§ Variant Angina (Prinzmetal):**
 - Angina-Pain Unrelated to Activity
 - Due to Coronary Vascular Spasm
 - ST-Elevation (Indicates Transmural Ischaemia)
 - **§ Unstable Angina (Dangerous):**
 - Occurs @ Rest Prolonged Pain
 - Increasing Frequency & Duration of Angina-Pain
 - Due to unstable Atherosclerotic Plaque
 - Can Lead to Myocardial Infarction (if untreated)

- Silent Ischaemia:

- o No Pain
- o Abnormal ECG (ST-Elevation)

Prolonged Ischaem ic \rightarrow Irreversible D am age \rightarrow Leads to:

- Ca+ Loading Within Cell:


o Ca+ Recycling Cycle (between Sarcoplasmic Reticulum, Sarcoplasm & Actin) Changes. o Marks the transition between Reversible & Irreversible Damage.

- Heart Failure – Due to:

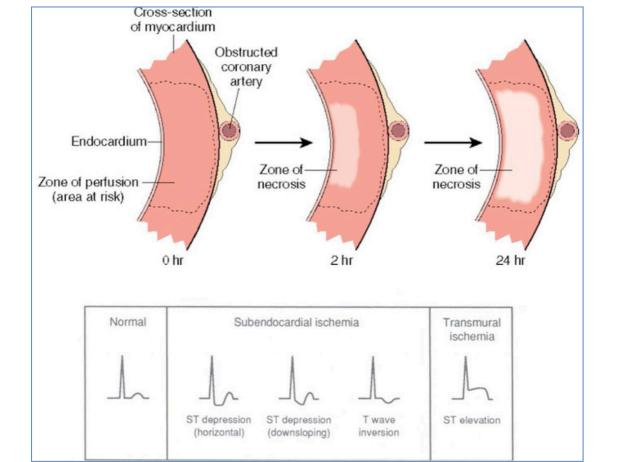
- o Lethal Arrhythmias
- o \land LVDP \rightarrow Pulmonary Congestion \rightarrow R-Heart Failure.

- Infarction (Necrosis):

- o Irreversible Cell Death Due to Ischaemia/Acute Thrombus
- o Myocyte Membrane damage \rightarrow Cell Enzymes/Proteins into Blood \rightarrow Used as blood Markers:
 - § Troponin I (Preferred)
 - § Creatinine Kinase

ECG Changes Due to Ischaemia:

Normally:


- 0 QRS = Ventricular Depolarization
- o T-Wave = Ventricular Repolarisation
 - § Note: Ventricular Repolarisation Very sensitive to myocardial perfusion. (Ie: Lack of blood supply alters Ventricular Relaxation)

- Subendocardial Ischaemia:

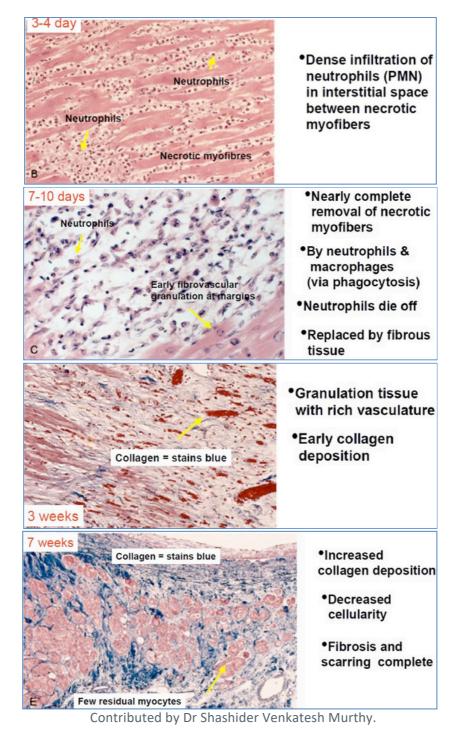
- o Poor Perfusion \rightarrow Altered Ventricular Repolarisation \rightarrow
 - § ST-Depression
 - § T-Wave Inversion

Transmural Ischaemia:

- o Full-thickness of the heart wall is damaged \rightarrow Altered Ventricular Repolarisation \rightarrow
 - § ST-Elevation

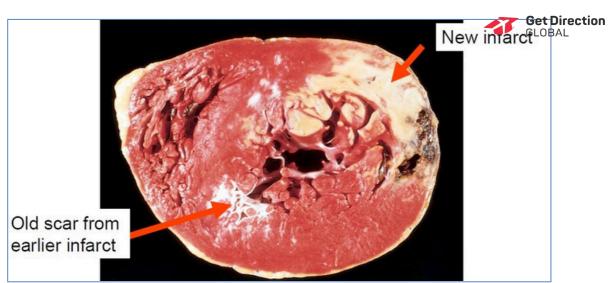
Adapted from Schoen FJ, Mitchell, RN: The heart. In Kumar V, et al, editors: Robbins and Cotran pathologic basis of disease.

M yocardial Infarction:


*90% of Infarcts due to Thrombosis from Ruptured Atherosclerotic Plaque.

- Diagnosis Requires 2 of the Following:

- o History of Ischaemic-Related Chest Pain:
 - § Eg: Angina
- O Changes on Sequential ECGs:
 - § ST-Segment Elevation \rightarrow Indicates *Transmural Ischaemia*:
 - Where the full-thickness of the heart wall is damaged.
 - Note: ST-Elevation isn't always due to MI.
- o Rise/Fall in Serum Cardiac Markers:
 - § Spilt contents of dead cells \rightarrow Blood
 - § Eg: Cardiac Troponin & Creatinine Kinase


Ensuing Inflammatory Response:

o When Cells Die \rightarrow Neutrophils Infiltrate Area \rightarrow Attack/Decompose/Phagocytose Dead Cells o After Inflammatory Response \rightarrow Fibrosed Scar Tissue (Such Tissue in Heart is Non-Contractile*)

GLOBAL Thrombus Plaque Rupture

www.getdirectionglobal.com

Contributed by Dr Shashider Venkatesh Murthy.

THE EFFECTS OF AGEING ON THE HEART:

THE AGEING HEART

W hat Happens in a Norm al Ageing Heart?:

- Physical Changes:
 - o Heart Dilation (Lumen Size of L-Atrium & L-Ventricle Increases with Age.)
 - o Increased Capillary Density
 - o Valves become calcified (Mitral Valve closes more slowly with age $\rightarrow \uparrow$ L-Vent. Filling Time)
 - o Fibrosis increases
 - o Arteries become less compliant

- Histological Changes:

- o The number of myocytes decreases
- o The remaining myocytes enlarge
- o Heart Wall thickens to compensate for extra stress from stiffer blood vessels.

- Functional Changes:

- 0 Decreased Heart Rate During Exercise
- o Decreased Contractility
- Physiologic Changes:
 - o Myocardial metabolism decreases (Reduced mitochondrial metabolism)
 - o Altered Sarcoplasmic Reticulum function (Lower Ca+ in SR & Fewer Ca+ pumps/cell) → decreased contractility
- Sensitivity Changes:
 - $0 \ 0 \ \beta$ -Adrenergic Sensitivity Decreases
 - o Chemgreceletor Caens ntonsytbe credises Max HR & Contractility decreases)
 - Baroreceptor Sensitivity Decreases

- Conductivity Changes:

- o Conduction pathways become calcified
- o Reduced Number of SinoAtrial Node Pacemaker-Cells \rightarrow DECREASED HEART RATE
- o Impaired Sinoatrial (Pacemaker) Function \rightarrow Atrial Fibrillation, Arrhythmias

- Note: These Changes = Normal = "Normal Ageing Myopathy"

These Above Changes Make Old Age a Risk Factor For Heart Failure:

- Incidence of Chronic Heart Failure Increases with Age...WHY?
 - o 1- The above changes may interact with each other \rightarrow Heart Failure
 - § Eg: Decreased Myocytes (contractility) + Valve Calcification $\rightarrow \downarrow$ SV \rightarrow Heart Failure

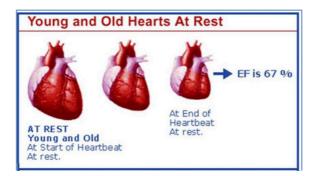
o 2- The above changes may interact with an existing cardiovascular disease:

- § Eg: Valvular Stenosis + Fibrosis + Less Compliant Arteries $\rightarrow \downarrow$ SV \rightarrow Heart Failure
- § Eg: Atherosclerosis + \downarrow Contractility $\rightarrow \downarrow$ Coronary Perfusion \rightarrow Ischaemia \rightarrow Heart Failure
- § Eg: Hypertension + Calcified Valves + Less Compliant Arteries $\rightarrow \downarrow$ SV \rightarrow Heart Failure
- Ie: The normal physiological effects of ageing, even if healthy, increases the presence of many Heart-Failure Risk Factors.

Healthy 20yr-old Vs. Healthy 80yr-old (At Rest)

- Heart Rate (Resting) is 10% Lower in Old Heart:
 - 0 Older hearts have a 10% lower Resting Heart Rate than Young.

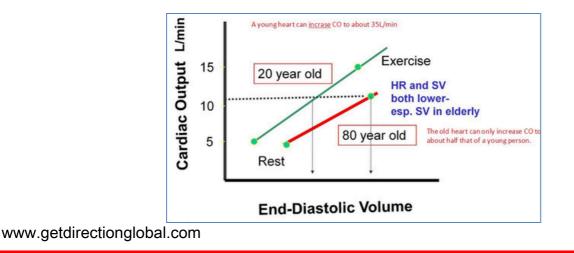
- Stroke Volume (At Rest) is 10% Higher in Old Heart:


- o Ie: An Old Heart pumps 10% more blood/beat than a Young Heart (At Rest), despite being a weaker pump.
- 0 ...**How?:**
 - § Older Heart Compensates for its \downarrow Contractility by Dilating more during Diastole to Increase Ventricular Filling (Preload/End-Diastolic Volume) $\rightarrow \uparrow$ Stroke Volume.

Same Resting Cardiac Output:

- o Ie: An Old Heart pumps out the same amount of blood/min (at rest) as a Young Heart.
- 0 ...**How?:**
 - § Older hearts have a 10% Higher Stroke Volume + but 10% Lower Heart Rate → Same Cardiac Output (At Rest) compensates for its ↓ Contractility by Dilating more during Diastole to Increase Ventricular Filling (Preload/End-Diastolic Volume) → ↑ Stroke Volume.
- o **However**, the older heart has a narrower 'Scope' for Activity Meaning it can only match a young heart's increase in Stroke Volume (during exercise) up until a point, after which the younger heart is superior.

- Same Resting Ejection Fraction:


- o Ie: An Old Heart has the same 'Ejection Fraction' (≈67%) as a Young Heart.
- § Note: Ejection Fraction = The Percentage of The End Diastolic Volume Ejected Each Beat.
 o However, the older heart has a narrower 'Scope' for Activity Meaning it can only match a young heart's Increase in Ejection Fraction (during exercise) up until a point, after which the younger heart is superior.

Healthy 20yr-old Vs. Healthy 80yr-old (During Exercise):

Higher Preload/End-Diastolic Volume (During Exercise) in Older Heart:

- o The older heart compensates for its \downarrow Contractility by Dilating more & Decreasing Heart Rate to Increase Filling Volume & Filling Time $\rightarrow \uparrow$ Preload
 - § Increased Preload (End-Diastolic Volume) $\rightarrow \uparrow$ Stroke Volume.

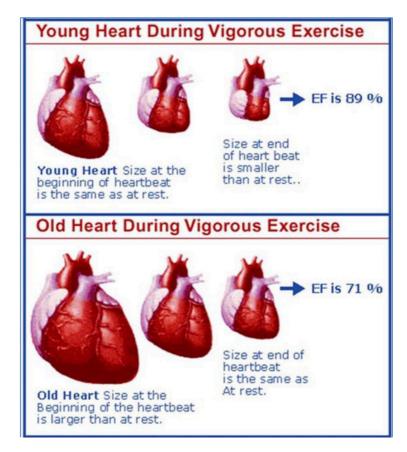
Heart Rate During Exhaustive Exercise						
Age (yrs)	20-29	30-39	40-49	50-59	60-69	70-79
Men	185	180	178	165	155	145
Women	182	176	169	165	155	145

Max HR of 80 yr old is 25% lower than 20 yr old

- Same Stroke Volume (During Exercise):

o Due to Increased Preload/EDV via Dilation & \downarrow HR.

- 25% Lower Cardiac Output (During Exercise) in Older Heart:


o Primarily Due to decreased heart rate. Note: SV stays same.

- § (The young heart can increase CO from 5L/min @ rest to about 35L/min)
- § (The old heart can only increase CO from 5L/min @ rest to about 15L/min)
- Lower VO2max (Max O2 Consumption) in Older Person:
 - 0 Old Person's VO2max is half that of a Young Person.
 - O Due to:
 - § Lower Muscle Mass (Ie: Less muscle uses less energy $\rightarrow \downarrow$ O2 Consumption)
 - § Changes in Muscle Metabolism (\downarrow enzyme efficiency/manufacture etc.)
 - § Decreased Number of Mitochondria/Cell.

- Lower Max. Ejection Fraction (During Exercise) in Older Heart:

o Young heart can increase its ejection fraction from $67\% \rightarrow 89\%$.

- § by \uparrow Contraction & \uparrow Heart Rate.
- o However, the Old heart can only increase its EF from $67\% \rightarrow 71\%$.
 - § by Dilating.

Summary:

- Young Heart: In Exercise its contractility is higher, so when the body requires a higher cardiac output, the heart contracts more than normal by balling up tighter in each contraction → decreasing End-Systolic Volum e → Increasing Stroke Volum e → Increasing Cardiac O utput.
- Older Heart: In Exercise Its contractility is lower (Approx 60% lower than 20yr old heart mostly due to sedentary lifestyle), so when the body requires a higher cardiac output, the heart compensates by dilating more to increase filling (End-Diastolic Volume) → Increasing Preload →Increasing Stroke Volume → Increasing Cardiac Output.
- Note: This compensatory mechanism of Dilating to increase L-Heart Pressures can lead to Symptoms of Heart Failure (Ie: Shortness of Breath, Loss of Pump Function & Pulmonary Oedema). However, this is not strictly Heart Failure, because Cardiac Output is not Severely Compromised.

Benefits of Aerobic Exercise on CardioVascular Ageing:

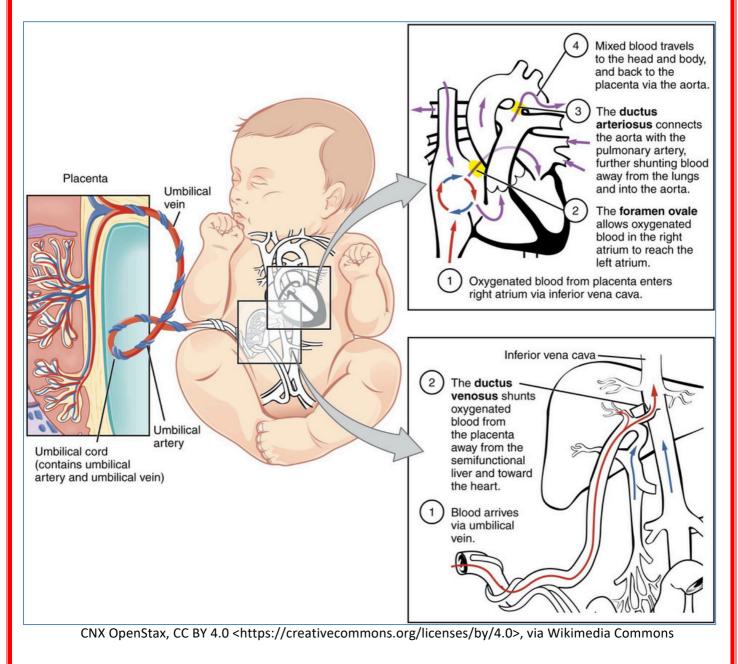
- Huge Benefits:
 - o 个Max O2 Consumption
 - o ↑Ejection Fraction
 - o ↑Contractility
 - o (\uparrow Contractility \rightarrow Less need to Dilate for Increased Stroke Volume)
 - Less Dilation $\rightarrow \downarrow$ EDV & \downarrow LAP.
 - o Less Arterial Stiffness.
- Ie: It seems that a large part of CV-Ageing is Related to a Sedentary Lifestyle.

Combating CV-Ageing with Pharmaco-Therapies:

Drugs that 个Vascular Compliance Drugs that reduce Cardiac Fibrosis Drugs that reduce Ventricular Hypertrophy Antioxidants – Prevents damage due to free radicals Anti=Inflammatory Drugs – CV-Ageing has a small underlying inflammatory component. (Plus Exercise) Get Direction

CARDIOVASCULAR PATHOLOGY:

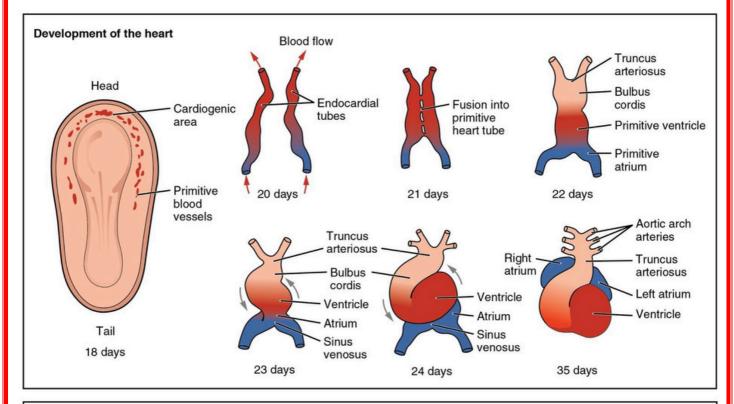
CONGENITAL HEART DEFECTS

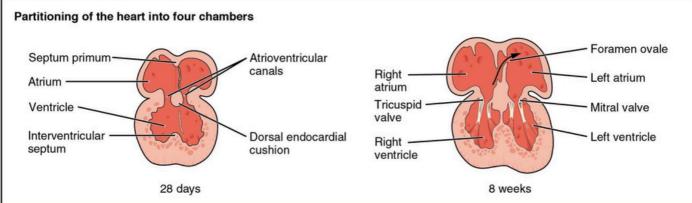


Review of Foetal Circulation (Physiological Bypasses/Shunts):

- Ductus Venosus
 - o Shunts O2-Blood from Placental Vein \rightarrow IVC \rightarrow R-Atrium
 - o Bypasses the Liver
- Foramen Ovale
 - o Shunts O2-Blood from R-Atrium \rightarrow L-Atrium.
 - O Bypasses the Lungs.
- Ductus Arteriosus
 - o Shunts O2-Blood from Pul-Artery \rightarrow Aorta
 - o Bypasses the Lungs
- (**All of these "shunts" are should close after birth due to pressure changes)
 o Note: The Foramen Ovale can take up to 6 months to close.

At Birth, the Pulmonary Vascular Resistance Falls Due to:

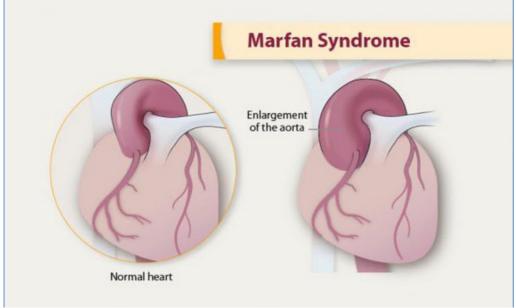

- 1- Mechanical of Lung Inflation → Increased Radial Traction of Vessels
- 2- Vasodilation due to 个Oxygen-Tension in the Lungs



Basics of Foetal Development of the Heart:

- Begins at Wk 3 of Gestation
- Why? Because by this stage, the foetus is too large for nutrient/gas exchange to be via simple diffusion.
 - Therefore, an active nutrient/gas distribution system is needed for continual growth of Foetus.
- Beating occurs @ week 4/5
- Starts as The "Cardiac Tube":
 - o The primordial tubular heart in the embryo, before its division into chambers.
 - o This cardiac tube begins to fold & twist on itself until it is laid out in the basic heart-like structure.
- Then Undergoes Septation:
 - o Between 4-6 weeks

CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons


CONGENITAL HEART DEFECTS OVERVIEW:

- Note: ~50-80% of Children have "Innocent" Heart Murmurs;
- Red Flag = Murmur + Cyanosis/↓Perfusion
- Left→Right (Non-Cyanotic) Shunts (ASD, VSD, PDA)
- o VSD = Commonest
- Right→Left (Cyanotic) Shunts (TETRALOGY & TRANSPOSITION) Obstructive Defects – (COARCTATION, Valvular Stenoses)

Common Genetic Associations:

- MARFAN'S SYNDROME:
 - o **Autosomal Dominant Disorder** o **CV-Defects: - (**Aortic aneurysm/Mitral Prolapse / Tricuspid Prolapse / ASD / Others**)**


https://www.cdc.gov/heartdisease/marfan_syndrome.htm

DOWN'S SYNDROME:

o = Trisomy 21

§ 40% of Down's Syndrome Patients have congenital Heart Defects o **CV-Defects:** - (Valvular Malformations / ASD + VSD)

Atrioventricular Septal Defect

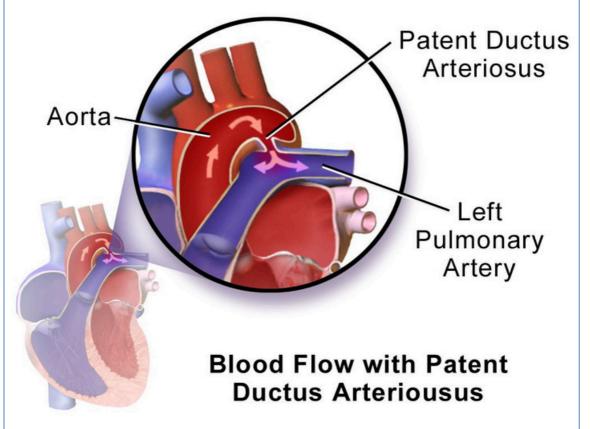

```
https://www.chfed.org.uk/wp-content/uploads/2018/08/AVSD-1.pdf
www.getdirectionglobal.com
```

LEFT→RIGHT (NON-CYANOTIC) SHUNTS.

- PATENT DUCTUS ARTERIOSUS (PDA):

o = Malocclusion of Ductus Arteriosus after birth.

- § L \rightarrow R Shunt from Aorta \rightarrow Pulmonary Artery
 - → Pulmonary Hypertension
 - Normally, Rising O2 Tension & Decreasing Prostaglandins cause it to Close.
- O Clinical Features:
 - § Murmur (Continuous, Harsh "Machinery-like" Murmur).

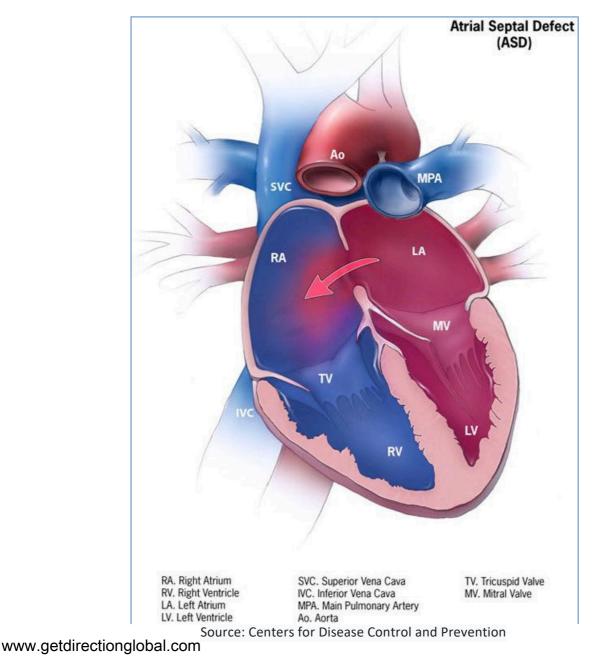

o Complications:

§

- § Soon After \rightarrow Irreversible Obstructive Pulmonary Vascular Disease (Pulmonary Vessel Hypertrophy & Vasoconstriction \rightarrow \uparrow Resistance) \rightarrow SHUNT REVERSAL \rightarrow Cyanosis
- 0 Investigations:
 - § CXR (Pulmonary Congestion, Cardiomegaly)
 - § ECG (LVH, RVH)
 - § ECHO (Definitive)

o Management:

- § (*PDAs should be closed as early in life as possible)
- § **Medical:** Indomethacin (Prostaglandin Inhibitor)
- (Note: In Cyanotic Heart Defects, Prostaglandin is actually *Given* to maintain a PDA)
 Surgical: Surgical Ligation

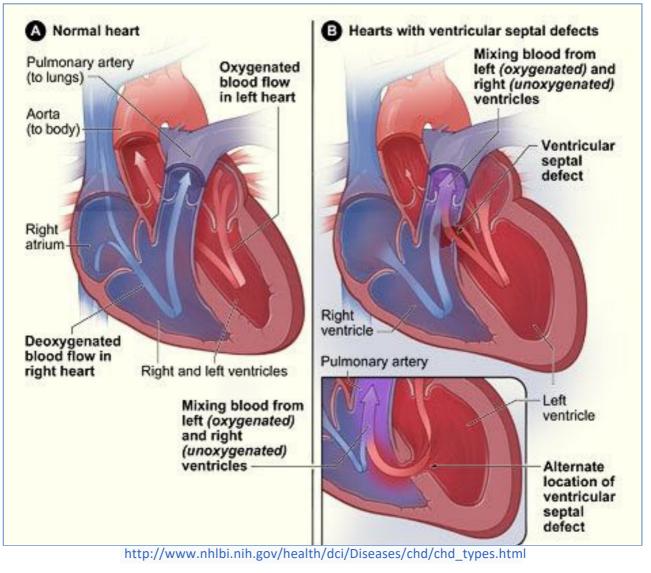


Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436

- ATRIAL SEPTAL DEFECT (ASD):

Get Direction GLOBAL

- o = Hole in the Interatrial Septum. (Note: NOT a patent Foramen Ovale)
 - § \rightarrow Shunt from L-Atria \rightarrow R-Atria:
 - ightarrow RV-Hypertrophy & Pulmonary HTN.
- 0 Clinical Features:
 - § Asymptomatic in Childhood (Symptom onset ~ 30yrs).
 - § Murmurs:
 - Diastolic ASD Murmur (During Atrial Contraction)
 - (Systolic Pulmonary Flow-Murmur (Hyperdynamic))
 - (Splitting of S2 (Delayed P2))
 - § **RV-Hypertrophy** → **Parasternal Heave**
- o Complications are Rare, but Include:
 - § **CCF** \rightarrow Pulmonary Oedema (Dyspnoea) + Peripheral Oedema, Ascites, etc.
 - § **"Paradoxical Embolisation"** (DVT → Stroke)
- 0 Investigations:
 - § ECG (RV-Hypertrophy, RAxDev)
 - § CXR (Pulmonary Congestion & Oedema)
 - § ECHO (Definitive)
- o Management:
 - § Surgical Endovascular Closure of Defect


- VENTRICULAR SEPTAL DEFECT (VSD):

- o (*The Most Common Congenital Heart Disease)
- o = Hole in the Interventricular Septum.
 - \rightarrow Shunt from L-Vent. \rightarrow R-Vent.
 - \rightarrow LV-Failure (CCF, Pulmonary HTN, RV-Hypertrophy).
- 0 Clinical Features:

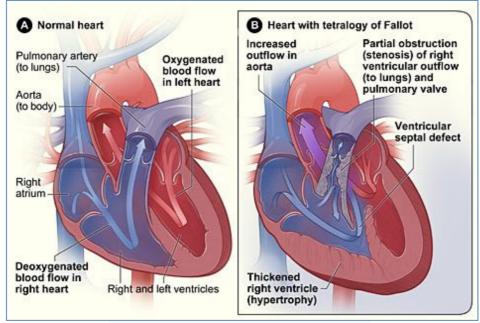
δ

- **S** Asymptomatic if Small (& Close Spontaneously)
- **§** Failure to Thrive if Large (& Requires Surgical Closure)
- § Murmurs:
 - Pansystolic VSD Murmur (+/- L-Sternal Thrill)
 - Pulmonary Valve Flow Murmur
- § CCF (Dyspnoea, Cough, Peripheral Oedema)
- o Complications:
 - § Initially a L-R-Shunt \rightarrow Pulmonary HTN \rightarrow RV-Hypertrophy
 - § Later → Irreversible Obstructive Pulmonary Vascular Disease → SHUNT REVERSAL:
 - R-L Shunt (↓O2 Blood → Systemic Circulation → Cyanosis/Death)
- 0 Investigations:
 - § **CXR** (Pulmonary Congestion, Cardiomegaly)
 - § ECG (LVH & RVH)
 - § ECHO (Definitive)
- o Management:
 - § Early surgical intervention is Critical for normal lifespan

RIGHT→LEFT (CYANOTIC – SPO2 <75%) SHUNTS

- **TETRALOGY OF FALLOT (Cyanotic Heart/**"Blue Baby Syndrome"):

0 4 Features:


§ §

SG

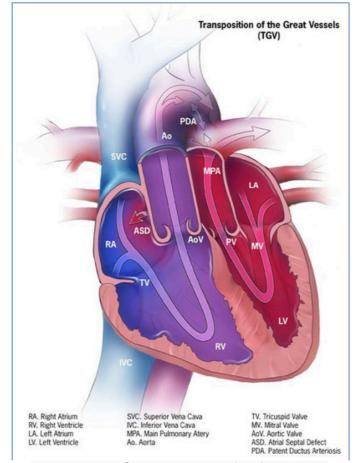
- § **1- VSD**
 - 2- Overriding Aorta:
 - Aortic Valve sits *above* the VSD :. Connected to both the R & L-Ventricle.
 - 3- Subvalvular Pulmonic Stenosis:
 - → RV-Outflow Obstruction → R-L-Shunt → Hyopxemia/Cyanosis
 - 4- R-Ventricular Hypertrophy:
 - Due to 个R-Vent. Worlkload
 - (5- Sometimes Patent Ductus Arteriosus)
- **O** Clinical Features:

§

- § If Mild Pulmonary Stenosis → Resembles an isolated VSD. (L-R-Shunt) [Non Cyanotic]
 - If Severe Pulmonary Stenosis \rightarrow R-L-Shunt \rightarrow
 - Chronic Cyanosis SpO2 <75%
 - Fingernail Clubbing
 - Polycythaemia (个RBC)
- § Symptoms:
 - Blue Baby
 - Paroxysmal Tachypnoea
 - Irritability/Crying
- § Classical Sign: Symptoms alleviated by squatting (kinking femoral artery) thereby increasing System ic Vascular Resistance
 - \rightarrow Means more blood being ejected via the Pulmonary Artery \rightarrow Better Oxygenation.
- o Complications:
 - § "Paradoxical Embolism" (DVT \rightarrow Stroke)
 - § Seizures
- 0 Investigations:
 - § ECG (RV-Hypertrophy)
 - § CXR (Boot-Shaped Heart)
 - ε ECHO (Definitive)
- o Management:
 - § Medical:
 - Supplemental O2
 - B-Blocker
 - § Surgical:
 - Definitive Repair

www.getdirectionglobal.com National Heart Lung and Blood Institute (NIH)

- TRANSPOSITION OF GREAT VESSELS:

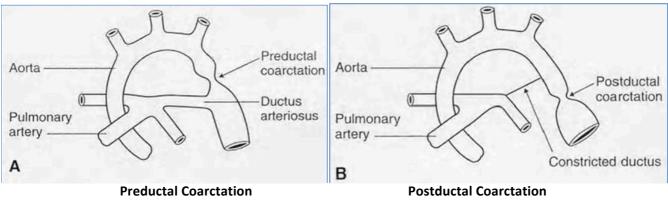

o Where the Aorta comes off the R-Ventricle & the Pulmonary Artery comes off the L-Ventricle.

o = Aorta & Pulmonary Artery are switched.

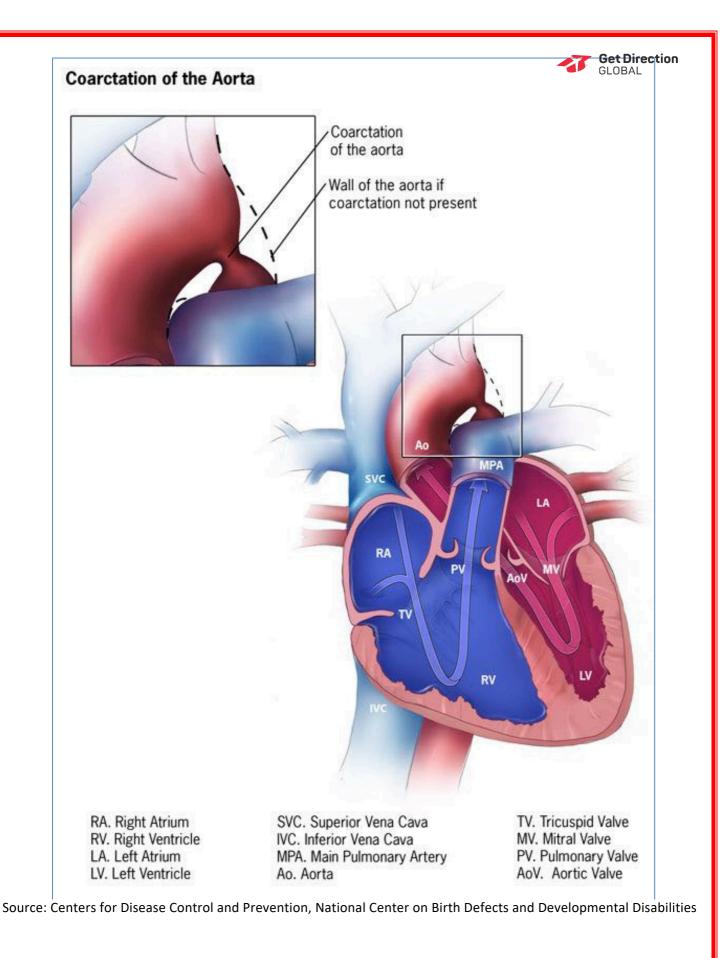
- § (Note: Atrioventricular Connections are still correct)
- § (Note: Venous Return is correct IVC/SVC & Pulmonary Veins)
- **§** Hence, the Pulmonary & Systemic Circuits run in *Parallel*, rather than *Series*.
- o Note: Incompatible with Post-Natal Life Unless a Shunt exists for Mixing of Blood:
 - Eg: TGV + VSD = Stable Shunt. (Adequate mixing)
 - § Eg: TGV + Patent Foramen Ovale = Unstable Shunt (Tends to close).
- **O** Clinical Features:
 - **§** The Most Common Cause of Cyanosis ("Blue Babies") during Infancy
 - § Severe Hypoxemia & Cyanosis →
 - Blueness of skin & mucous membranes
 - Fingernail Clubbing
 - Polycythaemia (个RBC)

o Complications

- § Prominent R-Ventricular Hypertrophy (R-V Pressure overload)
- § Atrophy/Thinning of L-Ventricle
- 0 Investigations:
 - § ECG (RAxDev, RVH)
 - § CXR (Egg-Shaped Heart with Narrow Mediastinum "Egg on a string heart")
 - § ECHO (Definitive Dx)
- o Management:
 - § Prostaglandin Infusion (To maintain PDA & allow mixing of blood)
 - **§** Surgical repositioning of Great Vessels
- O Prognosis:
 - **S** Typically Incompatible with Life:
 - 30% die within a week
 - 90% die within a year
 - § 90% 1yr Mortality without Surgery.

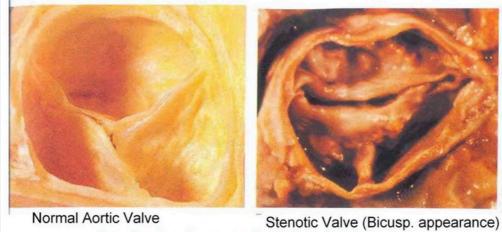

www.getdirectionglobal.comSource: Centers for Disease Control and Prevention

'OBSTRUCTIVE' CONGENITAL HEART DEFECTS:


- COARCTATION OF AORTA

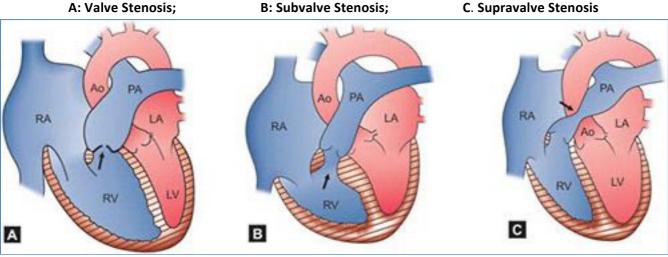
0 = Narrowing/Constriction of the Aorta.

- § 2Male:1Female
- § 50% have Bicuspid Aortic Valve
- O Pathophysiology 2 Types:
 - § Pre-ductal:
 - Proximal to Ductus Arteriosus
 - \rightarrow R-L-Shunt (Pulmonary Artery \rightarrow Aorta).
 - \rightarrow Cyanosis of *Lower Half* of body.
 - § Post-ductal:
 - Distal to Ductus Arteriosus.
 - \rightarrow L-R-Shunt from Aorta \rightarrow Pulmonary Artery
 - \rightarrow Pulmonary HTN & CCF
 - § Leads to: \uparrow Afterload $\rightarrow \uparrow$ L-Ven. End Systolic Volume $\rightarrow \downarrow$ Cardiac Output \rightarrow Hypotension
 - $(\downarrow Cardiac Output \rightarrow Backup of Blood in Lungs \rightarrow Pul.Congestion)$
 - ightarrow L-Ventricular Hypertrophy ightarrow Possibly Left Heart Failure
 - \rightarrow Decreased Perfusion to Abdominal Organs & Lower Limbs.
- **O** Clinical Features:
 - § Symptoms:
 - Leg Claudication
 - Note: Presentation may take up to 10 years As the Coarctation doesn't grow with the rest of the body → Only symptomatic when peripheral demand > Aortic Flow.
 - § Signs:
 - Upper limb BP > Lower limb BP.
 - RF-Delay
 - Cold Legs & 个CRT
 - Systolic Murmur
 - LV-Hypertrophy
- 0 Investigations:
 - § ABI (Asymmetrical)
 - § ECG (LV-Hypertrophy)
- o Management:
 - § Surgery (Balloon Angioplasty & Stenting).



AORTIC STENOSIS:

- o Typically presents as a Bi-Leaflet, instead of the normal Tri-Leaflet Formation.
- o Most common in males.
- o Leads to $\rightarrow \uparrow$ LV-Afterload $\rightarrow \downarrow$ Cardiac Output \rightarrow LV-Failure (Pul.HTN, Dyspnoea)



Remember, a low pulse pressure can be an indicator of valvular stenosis. Source: Unattributable

PULMONIC STENOSIS:

- o = Narrowing/Obstruction of the Pulmonary Valve OR Artery.
 - § 90% = Valvular
 - § 10% = Elsewhere in the Pulmonary Artery

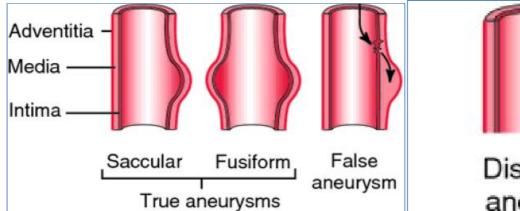
o Leads to $\rightarrow \uparrow$ RV-Afterload $\rightarrow \downarrow$ Pulmonary Output \rightarrow RV-Failure (Peripheral Oedema)

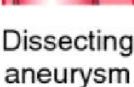
Source: Unattributable

Get Direction

GLOBAL

ANEURYSMS & DISSECTIONS




Aneurysms (General Info):

Definition:

• Most vascular surgeons: "A >50% Increase in the Size of an Artery Above its Normal Size"

- § Eg: Normal Infra-Renal Aorta = 2cm :. An Aneurysm would be >3cm.
- § (90% of AAAs are Infra-Renal)
- o Robbins "a Localised abnormal dilation of a BLOOD VESSEL OR THE HEART".
- True Vs. Pseudo- Aneurysms:
 - o True Aneurysms (Full Thickness Aneurysms)
 - o False/Pseudo Aneurysms (Partial Thickness Aneurysms)
- Classification (Size/Shape):
 - o "Saccular Aneurysms": Hemispherical Outpouchings involving ONLY PART of the vessel wall
 - o "Fusiform Aneurysms": CIRCUMFERENTIAL Dilation of a vascular segment
 - o "Dissecting Aneurysms": Blood within the Arterial wall itself.

- Aetiologies:
 - O Atherosclerosis (Typically AAAs)
 - o Hypertension (Typically Thoracic Aortic Aneurysms)
 - o Myocardial Infarction (Typically Ventricular Aneurysms)
 - O (Others: Congenital Eg: Downs/Marfan's/Ehlers-Danlos Syndrome/Connective Tissue Disorders/Etc)
- Risk Factors:
 - O Age >65
 - o Male
 - 0 Atherosclerosis
 - o **↑Cholesterol**
 - O HTN
 - o Smoking
 - o FamHx

ABDOMINAL AORTIC ANEURYSM:

Aetiology:

O Typically Atherosclerosis (But can be due to other causes)

Pathogenesis:

- o Atherosclerotic Plaque \rightarrow Weakening of Vessel Wall \rightarrow Aneurysm
- Morphology:
 - 0 90% of AAAs are *INFRA-RENAL*
 - o Saccular OR Fusiform
 - **Clinical Features:**
 - O Presentation:
 - § Typically Asymptomatic (Hence "Sudden Death")

§ But Symptoms Include:

- Pulsatile Abdo Mass.
- Pain Back/Flank/Abdo/Groin
- DVT (From Venous Compression)
- "Trash Foot" from Thrombo-Emboli
- Investigations:
 - o Clinical Suspicion + Examination
 - 0 **Abdo USS (100% Sensitive)

o CT/MRI

- Com plications:

O #AAA – (Note: SIZE = #1 Predictor of Rupture):

§ Classic Triad of Rupture:

- Sudden Pain (Abdo/Back)
- Shock (Hypotension/ALOC)
- Pulsatile Mass
- § + Acute Abdomen
- § + Grey Turners Sign
- **O** Occlusion of a Branch-Vessel:
 - § Eg: Pre-Renal Failure
 - § Eg: Mesenteric Ischaemia
- o Thromboemboli:
 - § Renal Infarction
 - § Mesenteric Infarction
 - § "Trash Foot" Focal Gangrene.
- Management:

o AAAs <5cm Diameter → Watchful Waiting (6mthly)

- § + Risk Factor Modification
- o AAAs >5cm Diameter → Surgical Repair (Due to ↑ Rupture Risk)
 - § (Open Vs. Endovascular Repair)

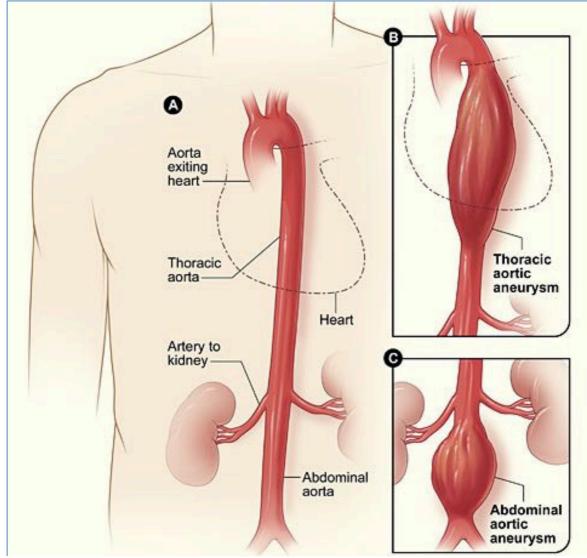
o #AAA (Ruptured AAA) → EMERGENCY SURGERY:

- § + 2x Large Bore Cannulas
- § + Fluid Resuscitation (Bolus + Maintenance; Target BP ≈ 80 Systolic)
- § + Group & Hold + X-Match for Transfusion

- Prognosis:

- 0 Pre-Rupture: Good Prognosis
- o Post Rupture: 95% Mortality (Only 30% Make it to Hospital; 20% of those Survive).

THORACIC AORTIC ANEURYSMS:


Aetiology:

o Hypertension

- Clinical Features:

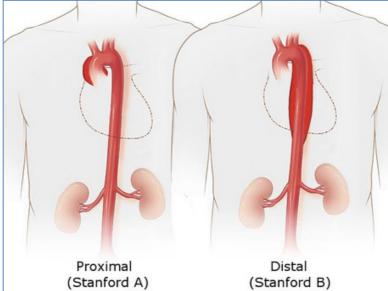
o Complications:

- § Mediastinal Compression (Heart & Lungs)
- § Dysphagia
- § Cardiac Disease (Eg: Aortic Regurgitation, Myocardial Ischaemia/Infarction)
- § Rupture

Public domain image: http://www.nhlbi.nih.gov/health/health-topics/topics/arm/types.html

AORTIC DISSECTION:

- Aetiology:


o Hypertension

o M:F = 4:1

- Pathogenesis:
 - o Hypertension \rightarrow Intimal Tear \rightarrow Blood Enters False Lumen \rightarrow Dissection Continues
- Morphology:
 - 0 **#1-** Ascending Type (Ascending Aorta):
 - 0 § Bad because can → Occlude Brachiocephalic Trunk/Internal Carotid/Subclavian. Descending Type (Descending Aorta):
 - § Bad because can \rightarrow Dissect all the way to legs \rightarrow GI/Renal/Limb Ischaemia
- Clinical Features:
 - 0 0 Sudden Excruciating Chest Pain Radiating to the Back between Scapulae
 - o +/RSignsRod Complexations:
 - § **Rupture** \rightarrow Cardiac Tamponade & Shock
 - § **Valvular** \rightarrow Aortic Regurgitation \rightarrow Diastolic Murmur (Due to Dilation)
 - § Vessel Occlusion \rightarrow MI, Stroke, Limb Ischaemia, Mesenteric Ischaemia, Renal Fail
- Investigations:
 - o CXR Wide Mediastinum, L-Pleural Effusion
 - o CT 100% Sensitive
 - O TOE (Echo) 100% Sensitive, but slow.
- Management:

o Aggressive BP-Reduction (Nitrates + B-Blocker) \rightarrow Slows Progression

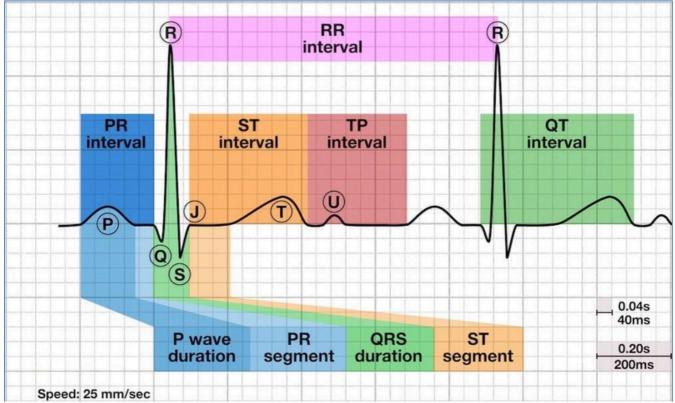
- § If Ascending: EMERGENCY SURGERY
- § If Descending: Initial Medical Mx

Npatchett, CC BY-SA 4.0 < https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

CEREBRAL ANEURYSM (Congenital Berry Aneurysms – See Sub-Arachnoid Haemorrhage in Nervous System Notes):

• Symptoms for an aneurysm that has not yet ruptured -

- o Fatigue
- o Loss of perception
- o Loss of balance
- o Speech problems
- Symptoms for a ruptured aneurysm
 - O Severe headaches
 - o Loss of vision
 - o Double vision
 - o Neck and and/or stiffness


www.getdirectionglobal.com

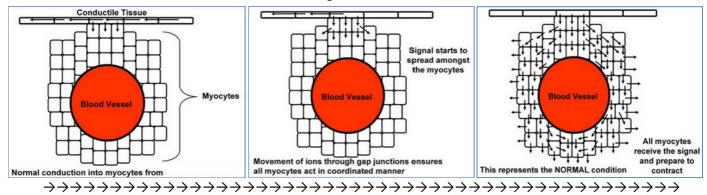
Characteristics of a Normal ECG:

- Sinus Rhythm/Rate:
 - o Between 60-100 bpm.
 - o Initiated by SA-Node
 - o Note: it's intrinsic rate is higher, but is suppressed by constant Parasympathetic-NS Influence
 - P-Wave:
 - o Rounded
 - o Between 0.5-2.5 mm Tall
 - o Less than 0.1 Seconds Duration
 - PR-Interval:
 - o Fixed
 - o Between 0.12-0.20 Seconds
 - QRS-Complex:
 - o Clean & Sharp
 - o Normally Less Than 25mm Tall
 - 0 QRS Interval: Between 0.06-0.12 Seconds Duration
 - Q-T Interval:
 - 0 Between 0.35-0.45 Seconds Duration
 - S-T Segment:
 - o Normally ≈0.08 Seconds Duration
 - T-Wave:
 - o Prominent
 - o Rounded
 - o Less Than 5mm Tall (Limb) or Less Than 10mm Tall (Precordial)
 - 0 Between 0.1-0.25 Seconds Duration
 - U-Wave
 - o Small (0.5mm) deflection immediately following the T-Wave.
 - o Usually in the same direction as the T-wave
 - o Best seen in leads V2 & V3

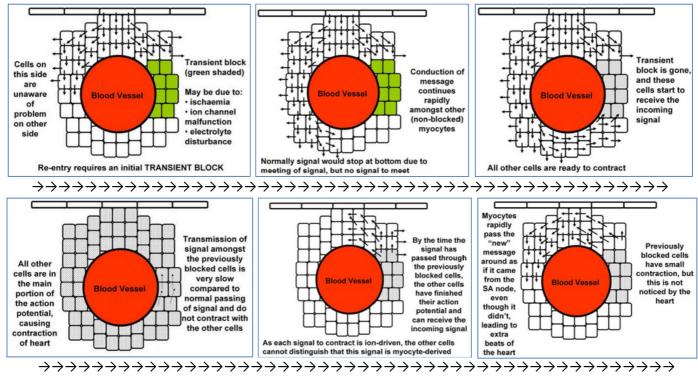
Licensed under Creative Commons; Based on a work at https://litfl.com

www.getdirectionglobal.com

Common Mechanisms of TachyArrhythmias



- <u>1- Re-Entry (AKA: Re-entrant tachycardias)</u>:


- o Accounts for ≈75% of Tachycardias
- 0 Causes of Re-Entry:
 - § Ischaemic Heart Disease
 - § Ion-Channel Mutations
 - § Electrolyte Disturbances
- 0 Results in an "Ectopic Focus":
 - § = An area in the heart that initiates abnormal beats. (Aka: An Ectopic Pacemaker)
 - § Ectopic foci may occur in both healthy and diseased hearts
 - § Usually associated with irritation of a small area of myocardial tissue.
 - § Creates a Single Additional Beat, OR a Full Rhythm.

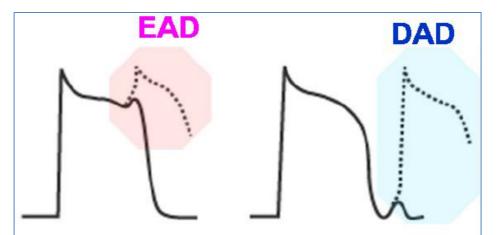
0 How It Occurs:

- § Normally, an Impulse from Conductile Tissue transmits into Myocytes (Contractile Cells),
- § then spreads amongst the myocytes. All Myocytes receive the Impulse and Contract. Note: Once a cell receives a signal, it won't receive another.

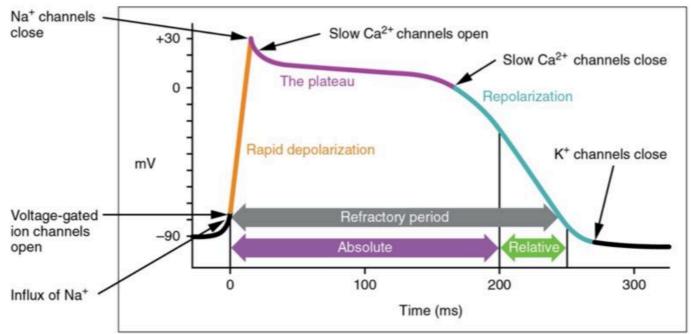
o However, for Re-Entry to occur, an initial momentary/transient Block is required. See Below:

2- Early After-Depolarisations (EAD):

0


- Occur During Repolarisation Phase
 - § (Where K+ is Flowing OUT)
 - § (Where Ca+ has STOPPED Flowing IN)

o More Likely to occur when Action-Potential Duration is Increased...WHY?


- S The Absolute Refractory Period for the Na+ Channels (those responsible for depol) only lasts for a small period of time. Usually this period is enough for repolarisation to occur.
- § for a small period of time. Usually this period is enough for repolarisation to occur. However, if the AP-Duration is increased, the membrane will still be in *Plateau* when the Na+ Channels enter the Relative Refractory Period, meaning a further stimulus will cause another action potential.

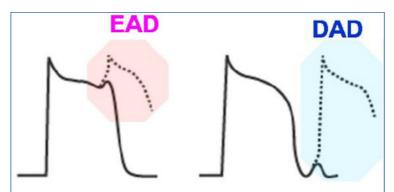
O Early After-Depolarisations can result in:

- § Torsades de pointes (Twisting of the Points)
- § Tachycardia
- § Other Arrhythmias

Fernández-Velasco, María & Benitah, Jean-Pierre & Gomez, Ana & Neco, Patricia. (2012). Ryanodine Receptor Channelopathies: The New Kid in the Arrhythmia Neighborhood. 10.5772/25800.

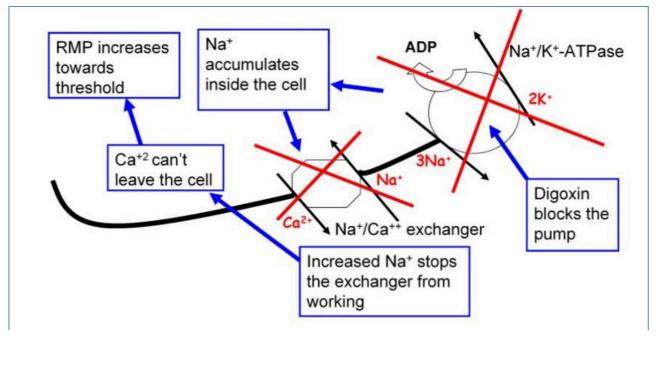
CNX OpenStax, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

3- Delayed After-Depolarisations (DAD):


- o Depolarisation during phase 4 (after repolarization is completed, but before another action potential would normally occur)
- o Due to High Intracellular Ca2+ Concentrations Caused by TOO MUCH DIGOXIN.
 - § Note: Digoxin is a drug used to treat Atrial Flutter & Atrial Fibrillation by Decreasing Conduction Through the AV-Node. Ie: DIGOXIN → DECREASED HEART RATE

o (Digoxin – Mechanism of Action):

- § **1-** Blocks the Na+/K+-ATPase on the cell.
 - → Accumulation of Na+ inside the cell
 - \rightarrow Deficit of K+ inside the cell
- S 2- The Secondary Active Na/Ca-Exchanger (That normally relies on the High Extracellular Na+ Gradient to remove Ca+ from the cell) ceases to work.
 - \rightarrow Accumulation of Ca+ inside the cell $\rightarrow \downarrow$ Rate of Depol & Repol of *Pacemaker* Action Potentials \rightarrow Stops Atrial Flutter/Fibrillation/other atrial tachycardia.


o Note: This accumulation of Na+ & Ca+ in the cell makes the Resting Membrane More Positive.

- $\S \rightarrow$ Action Potentials are easier to stimulate
- § Can Lead to A Series of Rapid Depolarisations.

Fernández-Velasco, María & Benitah, Jean-Pierre & Gomez, Ana & Neco, Patricia. (2012). Ryanodine Receptor Channelopathies: The New Kid in the Arrhythmia Neighborhood. 10.5772/25800.

Digoxin & Delayed After-Depolarisations:

COMMON TACHYCARDIAS:

SUPRAVENTRICULAR TACHYCARDIAS:

SINUS TACHYCARDIA:

o = Sinus Rhythm of 100+Beats/min

- Shortened T-P Interval §
- All waves clear & visible Ie: Sinus Rhythm is still very much present ξ

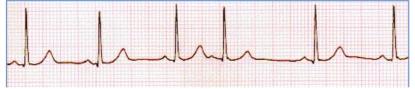
o Normal During:

- Exercise §
- § Stimulants (Caffeine)
- Sympathetic NS Response ξ

Pathological Causes: 0

- Fever (Increases Permeability of Ions) §
- Hypovolemia (Eg: Haemorrhagic Shock) §
- Pulmonary Emboli §

o Management:


- Carotid Massage §
- ξ (B-Blocker if Symptomatic)

ATRIAL PREMATURE BEATS (APBs):

o = Single Ectopic P-Waves → Single Ectopic QRS-Complexes o Management:

- - Nil required ξ
 - (If Symptomatic \rightarrow B-Blocker or Ca-Ch-Blocker) ξ

ATRIAL FLUTTER:

o = Atrial Rate of ≈300bpm; But NOT Sinus Rhythm!

Not all waves are conducted to the Ventricles (AV-Node only lets through some of these ξ impulses) \rightarrow Varied Ventricular Rate

o P-Waves have a 'Sawtooth' appearance

- Ventricular Conduction Variable (Eg: 2:1 / 3:1 / 4:1 Block etc) δ
- o Mechanism: Re-Entry

ξ Most Common in Patients with Pre-Existing Heart Disease.

o Treatment:

§

- Rate Control (B-Blocker, Ca-Ch-Blocker [Verapamil], Digoxin) §
- Electrical Cardioversion (Different to Defibrillation) 8 S
 - To Restore Rhythm (the use of an electric shock) •

Overdrive Pacing

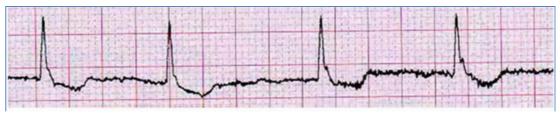
Catheter Ablation (Removal of Blocked Tissue via femoral catheter)

This is an example of a 4:1 (Atria:Ventricle) Conduction Ratio

- ATRIAL FIBRILLATION (AF):

§

o = Sinus Rate of ≈350-600Beats/min; Irregular QRSs.


- § Atrial Depolarisations are Disorganised \rightarrow ineffective Atrial Contraction
 - Only Partial Signal Transmission to Ventricles \rightarrow Irregular Pulse Rate.
- § P-Waves are Unclear
- O Causes "PIRATE SHIV":
 - § PE, IHD, Rh-Heart Disease, Anaemia, 个Thyroid, ETOH, Sepsis, HTN, latrogenic, Valvular

o Presence of Atrial Fibrillation $\rightarrow \uparrow$ Risks of:

- § Hypotension (due to \downarrow Cardiac Output)
- § Pulmonary Congestion (Due to L-Heart Failure)
- § Thrombus Formation (Due to pooling of blood in Atria)

o Treatment:

- § Ventricular Rate Control (B-Blocker / Ca-Ch-Blocker [Verapamil] / Digoxin)
- § Anticoagulation (*Warfarin* or other)
- § Cardioversion (Medical [Sotalol/Amiodarone] or Electrical)

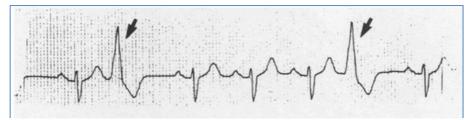
- PAROXYSMAL SUPRAVENTRICULAR TACHYCARDIA (PSVT):

0 = Sudden Onset Regular Tachycardias (Typically Atrial Re-Entry)

- O § Rate \approx 130+bpm (Regular)
 - Diagnosis:
 - § ECG
 - Adenosine Trial (Dromotropic \rightarrow Slows SA-Node) :. If Rate slows = SVT.
 - (If not, consider ventricular cause)
- o Management:
 - § Rate Control (B-Blocker / Ca-Ch-Blocker [Verapamil] / Digoxin)
 - § (Definitive Catheter Ablation.)

VENTRICULAR TACHYCARDIAS:

- PREMATURE VENTRICULAR (QRS) COMPLEXES (PVC):

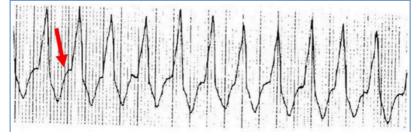


o = Additional QRS's with No Preceding P-Wave.

- § Wide QRS & Bizarre Shape
- o **Complication** Consecutive PVCs = VENTRICULAR TACHYCARDIA.
- O Causes:
 - § Normal in Adolescents/Young Adults (Once/twice a day)
 - § Heart Disease
 - § Hypokalaemia (Low K+ levels) \rightarrow Hyperpolarises the cell
 - § Hypoxia

o Treatment:

- § Sometimes Requires no Treatment (If only occasional)
- § Potassium Supplements
- § B-Blocker (if Symptomatic)


- VENTRICULAR TACHYCARDIAS:

o = 3 or more Consecutive Premature Ventricular Complexes.

- § **Sustained Ventricular Tachycardia** = If it persists for more than 30s.
- § Non-Sustained Ventricular Tachycardia = if it self-terminates
- o SA-Node Activity is often overwhelmed by QRS Complex.
- o T-Waves & P-Waves are Unclear.
- o Mechanism: Re-Entry

o Treatment – If Sustained (>30s):

- § Cardioversion
- § +/- Anti-Arrhythmic Drugs (Type 1a Antiarrhythmics [Eg: Procainamide])

- VENTRICULAR FIBRILLATION:


o = Disordered, Rapid Ventricular Depolarisation with NO Coordinated Contraction.

§ No Coordinated Contraction → No Cardiac Output

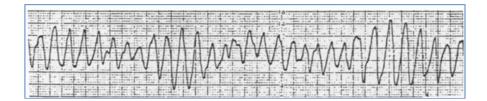
§ A Cause of "Sudden Death"

o Often Triggered by an episode of Premature Ventricular Complexes or Ventricular Tachycardia. o Treatment:

- § **Defibrillation** (Much Stronger than Cardioversion & isn't timed)
- § +/- CPR
- § +/- Anti-Arrhythmic Drugs.

www.getdirectionglobal.com

- TORSADES DE POINTES "Twisting of the Points":



o = A Polymorphic Ventricular Tachycardia with QRS-Complexes of Changing Amplitude

- § Rate ≈ 200-250bpm
- § ECG *appears* to be 'twisting around'.
- O Causes:
 - § Long-QT-Syndrome (An inherited ion channel mutation)
 - § (Drugs) Eg: K+ Channel Blockers
 - § Electrolyte Disturbances (Hypokalaemia / Hypomagnasaemia)

o Management:

- § IV Magnesium
- § Temporary Pacing
- § DC Cardioversion (If Haemodynamic Compromise)

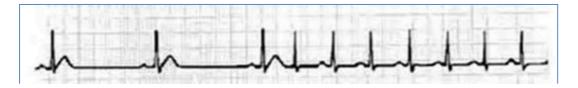
COMMON BRADYCARDIAS:

SINUS BRADYCARDIA:


- = Sinus Rhythm of <60 Beats/min (SA-Node is still the pacemaker)
 - o Prolonged TP-Interval; All Waves Visible
 - o All waves clear & visible
- Occurs Normally:
 - o At rest/Sleeping (Parasympathetic-NS)
 - O In Elite Athletes (Because SV is Higher)
 - o With Negative-Chronotropic Drugs (Ie: Meds that depress SA-Node Activity)
- Pathological Causes:
 - o Depressed Intrinsic Automatic SA-Node Firing (Eg: Due to Ischaemic Heart Disease/Old Age)
 - o Cardiomyopathy
- Management:
 - o Atropine (If symptomatic) (+/- Pacing)

ESCAPE RHYTHMS (SINUS ARREST/EXIT BLOCK):

= SA-Node Failure (No P-Wave)


- $o \rightarrow$ Hence, the pace is set by the next available Node, the AV-Node \rightarrow AV-Nodal 'Escape Rhythm'.
- $o \rightarrow$ The 'Pacemaker' Impulse is Initiated by the AV-Node \rightarrow Sets the rhythm.
- o AV-Node has a slower Intrinsic Rate \approx 40-60bpm (Compared to the SA-Node's 90-100bpm)
- Management:
 - o Cease Dromotropic Drugs (B-Blockers / Ca-Ch-Blockers / Digoxin)
 - o In patients with complete AV block, high-grade AV block, or symptomatic sick sinus syndrome (ie, sinus node dysfunction), **a permanent pacemaker** may be needed

BRADY-TACHY SYNDROME:

- = Intermittent Episodes of SA-Node Bradycardia & Tachycardia
 - 0 Due to SA-Node Instability
 - o Common in Elderly
- Management
 - o Requires a pacemaker

CONDUCTION BLOCKS:

General Info About Conduction Blocks:

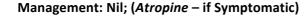
= Impaired Conduction between Atria & Ventricles

- o Commonly resulting from Ischaemic Damage to Nodal Tissue o Often Involves an Escape Rhythm.
- Types of Conduction Blocks:
 - o Between Atria & Ventricles (Ie: Vertical (AV) Conduction Block)
 - O OR...Between L-Heart & R-Heart (Ie: Lateral Conduction Block)

AV-CONDUCTION BLOCKS \rightarrow <u>1 OF 3 DEGREES</u>:

1- FIRST-DEGREE HEART BLOCK:

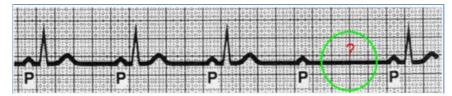
- o = Prolonged delay between Atrial & Ventricular Depolarisation. (Greater than 0.2sec)
 § → Prolonged PR-Interval
- o 1:1 Relationship between P-Waves & QRS-Complex is Maintained.
- o No Real Symptoms (Treatment Not Necessary)



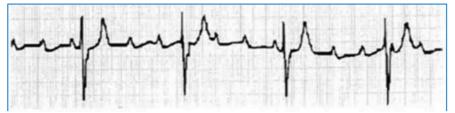
2- SECOND-DEGREE HEART BLOCK:

§

o MOBITZ TYPE-I (WENCKEBACH):


- **§** = Gradual Lengthening of PR-Interval until a QRS is blocked.
 - →Some P-Waves aren't followed by QRS-Complexes
- § Minimal Symptoms

MOBITZ TYPE-II:


- **§** = Loss of AV-Conduction WITHOUT lengthening of PR-Interval (PR-Interval is Fixed)
- § Block may last for 2/more beats.
- § Management: Pacemaker

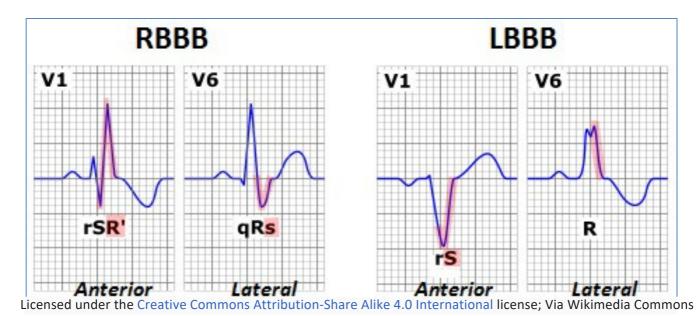
3- THIRD-DEGREE HEART BLOCK (AKA: COMPLETE HEART BLOCK):

o = Complete AV-Conduction Failure.

- § No P:QRS Relationship
- § \downarrow Cardiac Output (Disordered Contraction of Atria & Ventricles)
- o Management: Pacemaker.

www.getdirectionglobal.com

BUNDLE BRANCH (LATERAL) BLOCKS (IE: @ L/R BUNDLE-BRANCHES):


- **RIGHT BUNDLE-BRANCH BLOCK:**

- **o** = When Right Bundle-Branch is unable to conduct impulses to R-Ventricle.
 - § Therefore, L-Bundle-Branch depolarizes L-Ventricle First, then the impulse travels to R-
 - § Ventricle causing it to depolarize.
 - Ie: Ventricles depolarize Consecutively rather than Simultaneously.
- o → Widened QRS-Complex

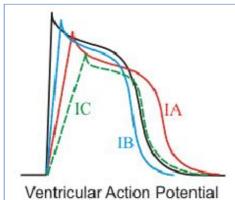
- LEFT BUNDLE-BRANCH BLOCK:

o = When Left Bundle-Branch is unable to conduct impulses to L-Ventricle.

- $\ensuremath{\S}$ $\ensuremath{\ensuremath{\mathsf{S}}}$ Therefore, R-Bundle-Branch depolarizes R-Ventricle First, then the impulse travels to L-
- § Ventricle causing it to depolarize.
- Ie: Ventricles depolarize *Consecutively* rather than *Simultaneously*.
- o → Widened QRS-Complex

www.getdirectionglobal.com

DRUG CLASSES FOR TREATING ARRHYTHMIAS:



Class-I Antiarrhythmics (Voltage-Gated-Na+ Channel Blockers):

- Indication:
 - O Typically Re-Entrant Tachycardias (But Not 1st line)
 - § SupraVentricular Tachycardia
 - § Ventricular Tachycardia
 - § Preventing Ventricular Fibrillation
- Mechanism of Action:
 - **O** Selective only for Voltage-Gated-Na+ Channel Blockade (in Contractile Cells):
 - § Slows down Re-Entrant Foci \rightarrow Restores SA-Nodal Control of HR.
 - § (Blocking the Fast-Na+ Channels reduces the *Rate* of depolarisation, prolonging the Action
 Potential duration → Therefore Reducing Ventricular Rate)

- Typical Agents:

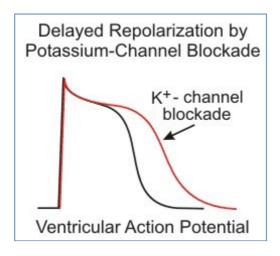
- o 1a Quinidine, Procainamide (Intermediate Association/Dissociation)
- o **1b** Lidocaine, Tocainide (Fas
 - (Fast Association/Dissociation)
- 0 **1c** Flecainide, Encainide (Slow Association/Dissociation)

- Class IA: e.g., quinidine
 Moderate Na⁺-channel blockade
 ↑ ERP
- Class IB: e.g., lidocaine
 Weak Na⁺-channel blockade
 - $-\downarrow ERP$
- Class IC: e.g., flecainide
 Strong Na⁺-channel blockade
 → ERP

Class-II Antiarrhythmics (β1-Blockers):

= β1-Adrenergic Receptor Antagonists

- O Note: There are 3 types of β-Receptor:
 - § β1-Receptors: in Heart & Kidneys
 - § β2-Receptors: in Lungs, GIT, Liver, Vascular Smooth Muscle, Skeletal Muscle
 - § β3-Receptors: in Adipose Tissue
- Classical Agents:
 - o **Propan<mark>olol</mark>
 - o Aten<mark>olol</mark>
- Mechanism of Action:
 - o β 1-Adrenergic Receptor Blockade \rightarrow Inhibit Sympathetic NS \rightarrow
 - § Conductile System $\rightarrow \downarrow$ HR
 - § Contractile Cells $\rightarrow \downarrow$ Contractility
- Indications:
 - O Atrial Fibrillation (Or other Sinus Tachycardia)
 - 0 SVT
 - o (Hypertension.)
 - o Ischaemic Heart Disease $\rightarrow \downarrow$ Cardiac Workload (Ie: \downarrow Metabolic Demands)
- Contraindications:
 - o Asthma \rightarrow Can cause Bronchoconstriction.
 - o Ca+ Channel Blockers (Verapamil/Nifedipine) \rightarrow Can cause Fatal Bradycardia.
- Side Effect:
 - o Reduced Renin Release $\rightarrow \downarrow$ Aldosterone $\rightarrow \downarrow$ Na & H2O Retention $\rightarrow \downarrow$ Blood Pressure.
 - O Sinus Bradycardia.
 - o Bronchoconstriction in Asthmatic Patients.
 - o (Rebound Tachycardia if stopped abruptly; Must be weaned off)


Class-III Antiarrhythmics (VG-K+ Channel Blockers):

Get Direction GLOBAL

- Affect VOLTAGE-GATED K+ Channels in Nodal Cells & Myocytes.
- Classical Agents:
 - o **Amiodarone
 - Mechanism of Action:
 - o VG-K+ Channel Blockers \rightarrow Prolongs Plateau Phase of AP \rightarrow \downarrow HR
 - O (Blocking K+ Channels prevents/slows K+-Efflux during Repolarisation of Cardiac Action Potentials. This prolongs the Repol. Phase → \downarrow Heart Rate.)
 - o Prevent Re-Entrant Arrhythmias (Atrial Flutter, Atrial Fibrillation, Ventricular Tachycardias) by prolonging the repolarisation phase of the action potential (Therefore prolonging the Refractory Period).
- Indications:
 - 0 *1st Line in *Re-Entrant Tachycardias*.
 - § Atrial Flutter
 - § Atrial Fibrillation
 - § Ventricular Tachycardias
 - § Ventricular Fibrillation

- KEY Side Effect/s:

- o Bradycardia
- 0 Early-After-Depolarisation (PVCs/Ectopic Beats)

Class-IV Antiarrhythmics (VG-Ca+ Channel Blockers):

- Affects VOLTAGE-GATED Ca+2 Channels in BOTH Nodal Cells & Myocytes
 - **O** Effect on Nodal Cells (Conductile Cells):
 - Blocking Ca+ Channels will slow the Depolarisation of Conductile Cells, thereby reducing their firing rate → Decreases Heart Rate (Negative Chronotropic Effect)

o Effect on Myocytes (Contractile Cells):

S Blocking Ca+ Channels will decrease Ca+ Influx into the Myocyte during the Plateau Phase of the Action Potential → Decreased Contractility (Negative Inotropic Effect)

- Classical Agents:

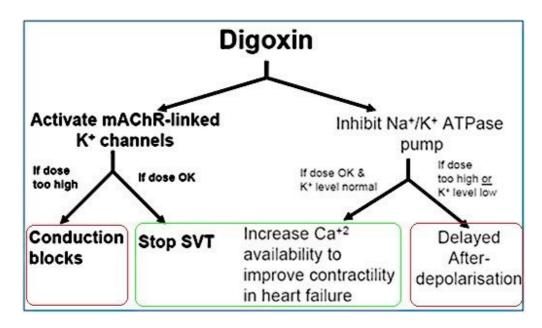
- o **Verapamil (Selective for the Heart)
- O Nifedipine (Selective for Vessels) (Used in Angina & Heart Failure)
- Indications:
 - 0 SVT (Supraventricular Tachycardias)

o Variant Angina (Works on **Vascular Smooth Muscle** \rightarrow Vasodilation $\rightarrow \downarrow$ BP & \downarrow Afterload)

- Contraindications:
- o β-Blockers– (Since Ca+ Channel Blockers also Inhibit Ca+ Influx) \rightarrow Fatal Bradycardia.

KEY Side Effect/s:

- o Heart Block
- o Bradycardia
- o (Also Hypotension/Dizziness due to \downarrow Contractility)


www.getdirectionglobal.com

Digoxin:

- 2x Clinical Uses:
 - 0 1- Heart Failure (Especially Pts with coincident Atrial Fib. 'Kill 2 birds')
 - o 2- Long Term SVT (Eg: AF) Management
- 2x Mechanisms of Action:
 - o 1- Inotropic: Myocytes: Na/K-ATPase Inhibitor $\rightarrow \uparrow$ Contractility.
 - § Use: Heart Failure
 - § Side Effect: "Early After Depolarisations" (Ectopic Beats/SVT)
 - o **2- Dromotropic: AV Node: K+ Channel Agonist** → Slows AV Conduction.
 - § Use: SVT (Supraventricular Tachycardia)
 - § Side Effect: Heart Block (if HR <60bpm)

- Summary of Actions & Potential Side Effects:

- o Note: Not to be given if HR less than 60bpm \rightarrow Brady/Heart Block.
- o Note: Also, Dosage is very important for reducing side effects.
- o *(Note: Also require K+ Monitoring & Supplements if on K+ Wasting Diuretic)

Adenosine:

- Clinical Use:
 - o Diagnostically to distinguish V-Tac from SVT.
 - o Note: Extremely short T1/2 Only Effective in Emergency Situations to stop SVT.
 - § (Digoxin is used for long-term SVT Management)
- Mechanism of Action:

o Adenosine Receptor Agonist @ SA & AV Nodes \rightarrow Delays AV-Node Conduction.

- 0 (HR will slow if it is an SVT) / (If HR is unchanged, then it is V-Tac)
- Side Effect/s:

o IMPENDING DOOM!!! (Pts literally feel like they're dying).

Atropine:

- Clinical Use:
- o Acute Bradycardias/Asystole $\rightarrow \uparrow$ HR. (However can cause V-Tac).
 - Mechanism of Action:

o **Chronotropic:** Anti-Muscaranic (Blocks Parasympathetic NS) $\rightarrow \uparrow$ HR.

KEY Side Effect/s:

o Overdose \rightarrow Ventricular Tachycardia

Get Direction

GLOBAL

DYSLIPIDAEMIA

Dyslipidaemia = a blanket term for Elevated Blood levels of Fats (cholesterol and/or triglycerides).

- Review of physiology of cholesterol and other lipids:

- O Five Lipid Transporters:
 - Sc. 1- Chylomicrons Made by Small Intestine:
 - Transport Dietary Fats from SI \rightarrow Liver (Via Lymph).
 - 2- Very Low Density Lipoproteins (VLDL's) Made by Liver:
 Transports Fats from Liver → Tissues.
 - 3- Intermediate Density Lipoproteins (IDL's) Made by Liver:
 - Essentially a VLDL with some lipid and protein removed.
 - 4- Low Density Lipoproteins (LDL's) BAD
 - Delivers Cholesterol to Liver and Tissues.
 - Note: \uparrow Fat Consumption $\rightarrow \uparrow$ [LDL] \rightarrow ATHEROSCLEROSIS
 - § 5- High Density Lipoproteins GOOD
 - Cholesterol Re-Uptake from Tissues \rightarrow Liver

Aetiologies:

o Primary Hyperlipidaemias (Genetic):

- § Eg: Familial Hyperlipidaemia
- ε Eg: Lipoprotein lipase deficiency

o Secondary Hyperlipidaemia (Acquired):

- § Eg: Obesity
- § Eg: Hypothyroidism
- § Eg: Diabetes mellitus
- § Eg: Nephrotic syndrome
- § Eg: Liver Failure
- § Eg: Drugs: (Eg: Oral contraceptives/Retinoids/thiazide diuretics)

Diagnosis & Screening (for high risk Pts):

o FamHx of CVD/IHD/MI/个Cholesterol

- o Physical Signs (Xanthomata, Xanthelasma)
- o Comorbidities (Eg: Obesity, Diabetes, HTN, Hypothyroid).
- Investigations:

o Serum TGLs - (Normal = <2mmol/L):</pre>

§ *>6mmol/L \rightarrow Requires Intervention - (<6mths Lifestyle Modification \rightarrow Statin Therapy). o Cholesterol - (Normal = <4mmol/L):

- § *>6.5mmol/L → Requires Intervention (<6mths Lifestyle Modification→Statin Therapy).
- § (Target = <4mmol/L total cholesterol or LDL-CK less than 1.8mmol/L)
- Management:
 - o ****1- Lifestyle Modification**:
 - S Diet (\downarrow Saturated Fat/Cholesterol Intake, \uparrow Fibre intake, \downarrow Alcohol, \downarrow Smoking, Weight Loss)
 - ↑Exercise

o **2- Pharmacological:

§

**Statins – (HMG-CoA Reductase Inhibitors):

- **Classical Agents:** (Simvastatin, Atorvastatin)
- MOA: HMG-CoA Reductase Inhibitor $\rightarrow \downarrow$ Cholesterol Synthesis
- Side Effects:
 - o Statin-Induced Myopathy/Myositis/Rhabdomyolysis → Muscle
 - Pain/Weakness + 个CK-Levels
- o (Other Lipid-Lowering Agents (Only Recommended If CHD or Intolerant to Statins)):
 - § ***Fibrates:** (*Fenofibrate*)
 - § **Bile Acid-Binding Resins (Ion Exchange Resins):** (Cholestyramine)
 - § **Ezetimibe:** (*Ezetimibe*)
 - § Fish Oil (Omega-3) Prophylactic?

www.getdirectionglobal.com

ATHEROSCLEROSIS

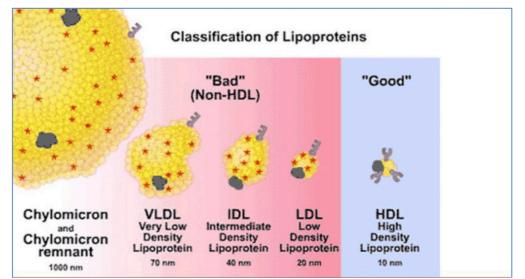
TERMINOLOGY:

- "Athero" = Gruel/Porridge (Ie: The fat in the blood)
- "Sclerosis" = Hardening

Lipids: The Main Culprits! (A Review)

- 3 Types of Lipids in Plasma:
 - 0 1- Cholesterol + Ch. Esters
 - O 2- Phospholipids
 - O 3- Triglycerides (Fatty Acids + Glycerol)
- Lipid Transport:
 - o **Insoluble In Water** \rightarrow Must be *Packaged* to be suspended in plasma.
 - o **Fats Absorbed in GI** \rightarrow Packaged into *Chylomicrons* (in S.I.) \rightarrow Lymphatics \rightarrow Lymphatics \rightarrow Circulation (Left Sub-Clavian Vein) \rightarrow Liver.

o Liver Repackages Chylomicron Remnants \rightarrow Lipoproteins \rightarrow Circulation


Particle	Source	Predominately transports	
Chylomicron	gut	Triacylglycerol	
Very-low density			
Lipoprotein (VLDL)	liver	Triacylglycerol	
Intermediate density (IDL)	catabolism	Cholesterol	
Low density (LDL)	catabolism	Cholesterol	
High density (HDL)	catabolism	N/A	
Lipoprotein A	liver,gut	N/A	

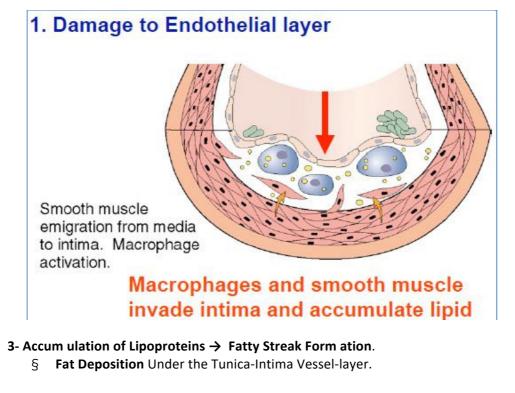
HDL Inversely related with AS-mops up used cholesterol and also acts as direct cholesterol transport to the liver. HDL also transfers cholesterol into other lipoproteins for subsequent hepatic metabolism GOOD

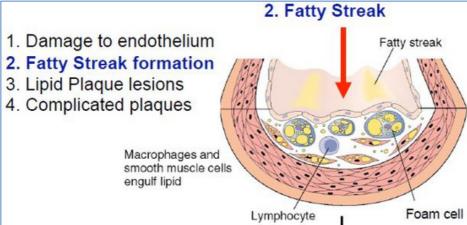
LDL Correlate with AS

BAD

Note: LDLs Contribute to Atherosclerosis Note: HDLs Help Prevent Atherosclerosis

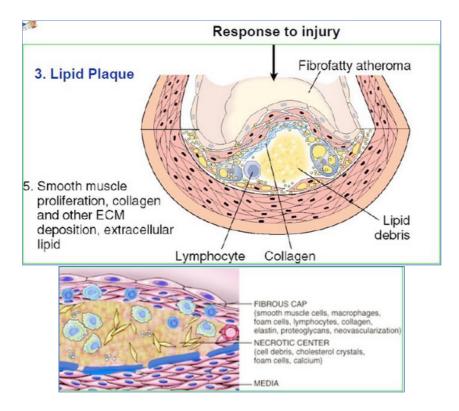
At some crucial BLOOD-concentration of LDL, some of the LDL particles begin to "stick" at certain vulnerable pointswww.getdirectionglobal.comof injury in the arterial wall.8015000900

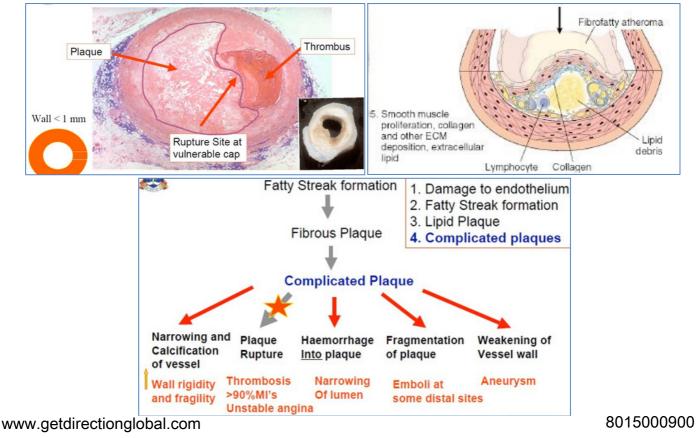

ATHEROSCLEROSIS:


Get Direction GLOBAL

- = A Progressive Chronic Inflammation of Arteries characterised by:

- o **1-** Inflammation, (Macrophages engulf LDLs \rightarrow "Foam Cells")
- o 2- Fibrosis,
- (Conn. Tissue Matrix/Collagen/Elastin)
- 0 **3- & Lipid Deposition** (Cholesterol Esters & Cholesterol in Cells)
- 0 ("Athero"= Fat, "Sclerosis"= Hardening)
- Aetiology:
 - o BEGINS with Endothelial Injury
 - o BIG Inflammatory Component
 - 0 Risk Factors:
 - § Non Modifiable: Age (40-60), Male, FamHx, Indigenous
 - § Modifiable: **^**Cholesterol, HTN, Smoking, Diabetes, Obesity, Metabolic Syndrome
- Pathogenesis


- o 1- Endothelial Injury & Activation (HTN/Smoking/DM/Turbulence/Toxins/Infection/Immune).
- o 2- Endothelial Inflammation (Macrophage & Smooth Muscle Migration)



o 4- Proliferation & Fibrosis – (Conversion of *Fatty Streak* into a Mature Ather GLOBAL

- § Fatty Streak gets more profound
- § 'Foam Cells' Unable to Digest Lipid Contents \rightarrow Die
 - **1.** \rightarrow Extracellular Lipids
 - **2.** \rightarrow Cell Debris
- § Oxidised LDLs Attract Immune Cells/Cytokines/Platelets/Smooth Muscle/Conn. Tissue
- § **1.** Positive Feedback. Plaque Builds.

Clinical Features/Complications:

o Multi-Organ Disease:

- § **Heart** \rightarrow IHD (Angina, MI).
- § **Brain** \rightarrow Cerebral Infarction (Stroke)
- § **Kidneys** → Renal Infarction
- § **GIT** \rightarrow GI-Ischaemia/Infarction
- § Lower Extremities \rightarrow PVD (Eg: Claudication, Gangrene of Legs, Arterial Leg Ulcers)

Investigations:

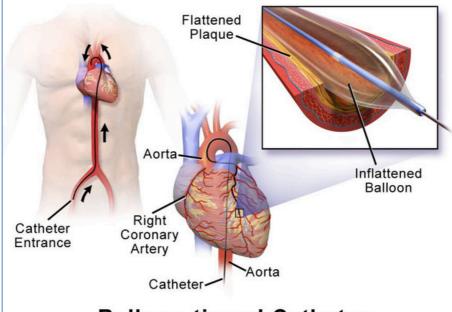
o Invasive Method:

- § Catheter via *Femoral Artery* \rightarrow *Coronary Artery* \rightarrow X-Ray Angiogram.
- o Non-Invasive Method:
 - § Contrast-Enhanced CT-Scan
 - § Takes 15sec.

Management:

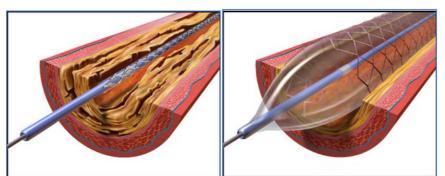
0

o Risk Factor Modification:

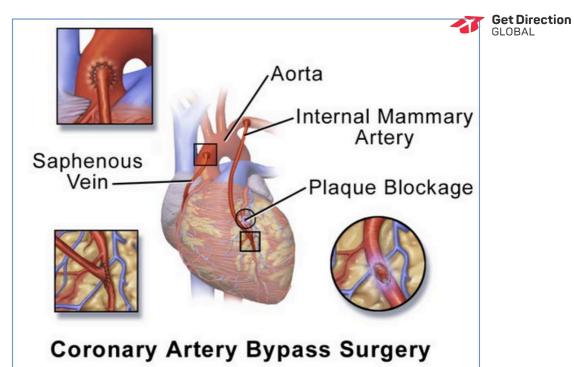

- § Statins (↑Cholesterol) ACE-I/B-
 - Blocker (HTN)
- § Improve diabetic control
- § Diet & **^Physical Exercise** (For Obesity)
- I Smoking, Alcohol

o Prevent Thrombosis:

§


- § Aspirin/Clopidogrel
- Surgical Intervention:

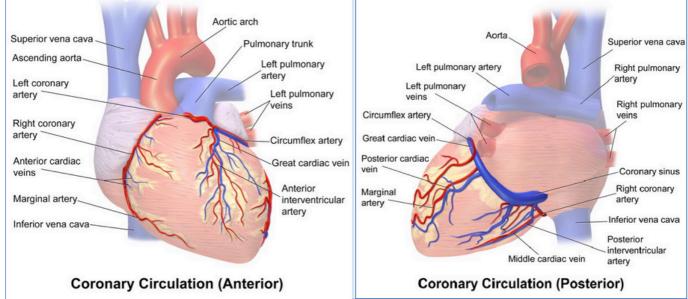
§ Balloon Angioplasty/Stent AngioplastyBypass Surgery:



Balloon-tipped Catheter

BruceBlaus, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

BruceBlaus, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons www.getdirectionglobal.com 8015000900



Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2).

ISCHAEMIC HEART DISEASE

Review of Coronary Anatomy:

Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). CC BY 3.0 https://creativecommons.org/licenses/by/3.0

LAD → Apex, Anterior LV, Anterior 2/3 of IV -Septum $\frac{LCX \rightarrow Lateral LV}{RCA \rightarrow Entire RV, Postero-Superior LV, Posterior 1/3 of IV-Septum}$

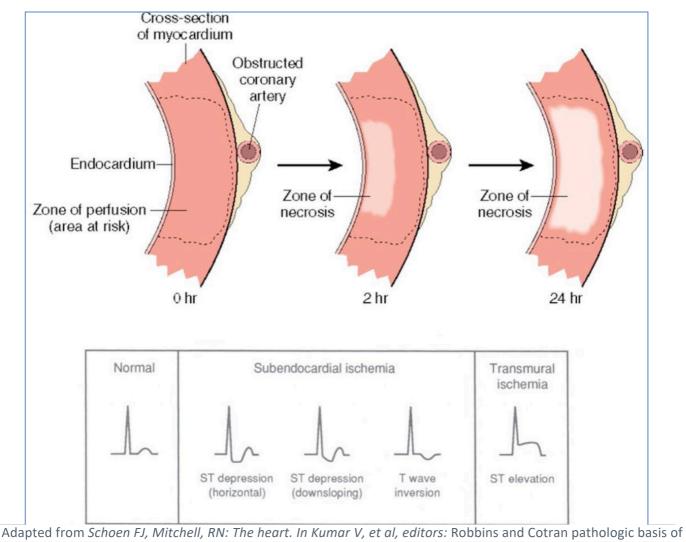
Degrees of Coronary Blockage:

- **<70% Occlusion:** Asymptomatic
- 70-75% Occlusion: Angina
 - 90% Occlusion: Chronic IHD
- Unstable Plaque: Unstable angina +/- Rupture → Acute MI
- > 90% Occlusion:

*Ischaemia Vs. Hypoxia Vs. Infarction:

- Ischaemia: A 'FLOW' Limitation, Typically due to Coronary Artery Stenosis (Narrowing)
- Hypoxia: An 'O2' Limitation, Typically due to High-Altitude/Respiratory Insufficiency/etc.
- Infarction: Irreversible Cell-DEATH, Typically due to sustained Ischaemia.

MI


Regional Vs. Global Myocardial Ischaemia:

- Regional Ischaemia:
- o Local Atherosclerosis/Thrombosis \rightarrow Ischaemia Confined to Specific *Region* of Heart.
 - Global Ischaemia (Rare):

o Severe Hypotension/Aortic Aneurysm → Ischaemia of Entire Heart

What Happens During Myocardial Ischaemia:

- Metabolic Changes (Aerobic → Anaerobic): ↑Lactate (Anaerobic Metabolism) & ↓pH
- **Pain:** Nociceptor (pain receptor) Activation \rightarrow Angina Pain
- Global Autonomic Symptoms: Tachycardia, Sweating, Nausea.
- **Pulmonary Congestion:** Eg: LV-Failure \rightarrow Pulmonary Congestion \rightarrow Shortness of Breath
- Ventricular Arrhythmias: Eg: SVT or VT or VF (due to Re-Entrant Focus & Altered Conduction Patterns)
- **Myocardial Damage:** Initially 'Subendocardial'-Ischaemia/Infarction (ST-Depression & T-Wave Inversion) → Progresses to 'Transmural'-Ischaemia/Infarction (ST-Elevation & Pathological Q-Waves).

disease.

Get Direction

GLOBAL

ANGINA PECTORIS:

- Aetiology:

o ↓ Myocardial Perfusion (relative to demand) due to Coronary Insufficiency.

- o Causes: **Atherosclerosis / Vasospasm / Embolism / Ascending Aortic Dissection
- O Exacerbated by (Vent-Hypertrophy, Tachycardia, Hypoxia, Coronary Arteritis (Eg: in SLE))

- Pathogenesis:

- o (= A Late Sign of Coronary Atheroma Symptoms Imply >70% Occlusion !!)
- o ("Insufficient Coronary Perfusion *Relative to* Myocardial Demand")
- 0 Stable Angina:
 - § Due to: Stable Atherosclerotic Coronary Obstruction (No Plaque Disruption)
 - § Presentation: Chest Pain on Physical Exertion, which fades quickly with Rest (minutes)

o Variant/Prinzmetal Angina:

- § **Due to:** Coronary Vasospasm (May not be Atheroma).
- § Presentation: Angina Unrelated to Activity (Ie: At Rest)
- **O** Unstable Angina ("Pre-Infarction Angina"):
 - § **Due to:** Unstable Atherosclerotic Plaque (+/- Plaque Disruption & Thrombus).
 - § **Presentation:** Prolonged Angina @ Rest (Either New-Onset/ \uparrow Severity/ \uparrow Frequency).
 - § **Note: = Red Flag that MI may be Imminent

o Silent Ischaemia:

- § **Due to:** Ischaemia masked by neuropathy (Eg: Diabetes/ \downarrow B12/etc)
- § Presentation: Painless, but may have Nausea, Vomiting, Diaphoresis + Abnormal ECG

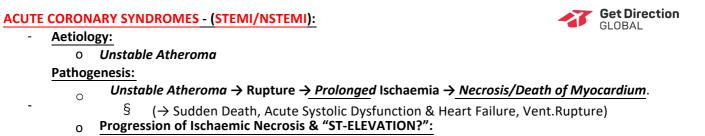
Clinical Features of Angina:

Ş

§

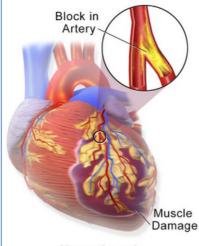
ξ

- o Common Presentation:
 - **<15 mins of Crushing, Central, Retrosternal Chest Pain \rightarrow Radiating to Arms, Neck or jaw:
 - (Stable: On exertion)(Prinzmetal: Rest)(Unstable: Worsening/Prolonged/@Rest)
 - +Dyspnoea (Pulmonary Congestion)
 - + Fear of Impending Doom
- O Signs:
 - \uparrow \uparrow Sympathetic Drive \rightarrow Diaphoresis S Hypotension \rightarrow Cold/Clammy/Peripheral Shut-Down/Thready Pulse
 - S Pulmonary Congestion \rightarrow Dysphoea, \uparrow JVP


Investigations:

- 0 (1st Line) Resting ECG:
 - § During Attack: ST-Depression, T-wave Inversion (Normal between Attacks)
 - ε (Path-Q-Waves if Previous MI).
- 0 (2nd Line) Cardiac Stress Test + ECG: Suggests Severity of CAD (Any ST Depression is a +Ve Result)
- 0 (3rd Line) Stress Echocardiography: Assess Ventricular Function
- o (4th Line) Coronary Angiography (Cath-Lab): Pre-Angioplasty to Map the Coronary Anatomy
- o (5th Line) Myocardial Perfusion Scans (Nuclear Medicine)
- Management/Treatment:

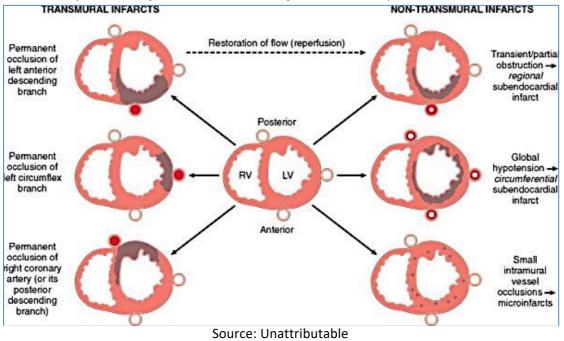
ξ


- o (Prevention/Management of CV Risk Factors):
 - § Smoking/Hypertension/Hyperlipidaemia/Diabetes/Obesity/Etc.
- o Medical Therapy (*Maintenance*):
 - § 1- Anti-Anginal Therapy:
 - Nitrates (GTN) Coronary Vasodilation → ↑ Cardiac Perfusion
 - **B-Blockers (***Metoprolol***)** To \downarrow Workload of the Heart
 - Ca-Channel Blockers (Diltiazem/Verapamil) To ↓Afterload
 - § 2- Antiplatelet Therapy:
 - Aspirin / Clopidogrel
 - 3- Lipid-Lowering Therapy:
 - Atorvastatin/Simvastatin
- 0 **Revascularisation (Definitive) OPTIONAL:**
 - PCI (Per-Cutaneous Intervention)/Coronary Angioplasty:
 - Balloon Dilation/Stenting of Coronary Arteries via Femoral Artery
 - ^S OR: CABG (Coronary Artery Bypass Grafting):

• Harvested Vein (Saphenous/Wrist) → Bypasses the blockage www.getdirectionglobal.com

- § 1- Initially "Subendocardial Necrosis" \rightarrow NON-ST-ELEVATION MI:
 - ST-Depression + T-Wave Inversion (As with Angina)
 - 2- Then "Transmural Necrosis" → ST-ELEVATION MI:
 - ST-Elevation + T-Wave Inversion + Pathological Q-Waves

Note: The Endocardium is spared due to O2/Nutrients of Ventricular Blood.



Blausen Medical Communications, Inc., CC BY 3.0 < https://creativecommons.org/licenses/by/3.0

o Most Common Coronary Obstruction & Locations of Ischaemia:

- 50% LAD Obstruction:
 Anterior-LV + Appendix Ap
 - Anterior-LV + Apex + Ant.2/3 of IV-Septum
 - 30% RCA Obstruction:
 - Posterior-LV + Posterior Septum + Free wall of RV.
 - 20% LCX (Left Circumflex) Obstruction:
 - Lateral LV (except for the apex.)
 - (Note: Nearly ALL Infarcts involve a portion of the LV)

www.getdirectionglobal.com

Clinical Features of NSTEMI/STEMI:

o Common Presentation:

§ §

§

- **>20mins Crushing, Central, Retrosternal Chest Pain \rightarrow Radiating to Arms, Neck or Jaw.
 - (Note: Some are "Silent" Eg: Diabetes, Post Cardiac Surgery, Elderly)
- +Dyspnoea (Pulmonary Congestion) + Fear of Impending Doom
- **Signs:** \uparrow Sympathetic Drive \rightarrow Diaphoresis
 - $_{\rm S}$ Hypotension \rightarrow Cold/Clammy/Peripheral Shut-Down/Thready Pulse
 - Pulmonary Congestion \rightarrow Dyspnoea/Tachypnoea/ \uparrow JVP
 - S Signs of PVD
 - ş
- Investigations:

0 (1st Line):

- **Serial Resting 12Lead ECGs (Every 15 Mins):**
 - ST-Changes and Diagnosing MI:
 - o V1, V2, V3, V4 = Anterior MI
 - o II, III, AVF = Inferior Wall MI
 - 0 I, AVL, V5, V6 = Lateral
- **S** 3-Lead Cardiac Telemetry (Screening for Arrhythmias)
- **§** Serial Troponin Levels (Cardiac Troponin-I/T, or CK-MB):
 - 1st. On Presentation
 - 2nd. @ 6hrs (个Troponin = MI)
 - 3rd. Within 24hrs
- § + Bloods (FBC, Serum Electrolytes, Glucose, Lipids)
- O (2nd Line):
 - **§ TTE/TOE Transthoracic/Transoesophageal Echo:**
 - Assess LV-Function
 - (+ Excludes DDXs Aortic Dissection / Pericarditis / Pulmonary Embolism)
 - **§** Myocardial Perfusion Scans (Nuclear Medicine):
 - ? Location of Infarct
- Management (As with Angina PLUS MORPHINE, O2 & ANTICOAGULATION + DEFINITIVE Mx):

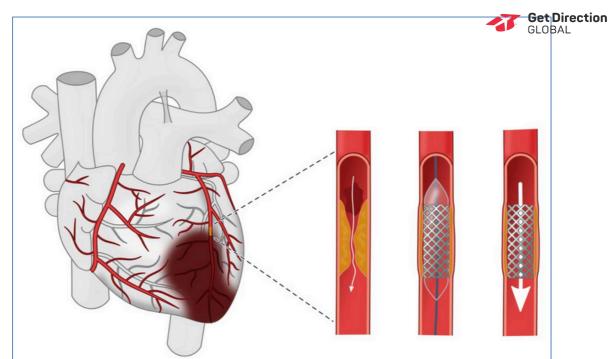
o (Simplified: MONA = Morphine, Oxygen, Nitrates, Aspirin)

- o 1- Medical Therapy (Maintenance):
 - § 1- Anti-Anginal Therapy:
 - Nitrates (GTN/Isosorbide Mononitrate) Coronary Vasodilation → ↑ Cardiac Perfusion
 - B-Blockers (Propanolol/Metoprolol) To \downarrow HR & Contractility $\rightarrow \downarrow$ Cardiac Workload
 - Ca-Channel Blockers (Nifedipine/Verapamil) To \downarrow Afterload $\rightarrow \downarrow$ Cardiac Workload

§ 2- Antiplatelet Therapy:

- (Aspirin / Clopidogrel)
- S Lipid-Lowering Therapy:
 - (Atorvastatin/Simvastatin)
 - +4- Morphine: (Analgesia + Vasodilation)
 - +5- Oxygen: (To Maximize O2 @ Myocardium)
 - +6- Anticoagulation: (Heparin/LMWH or Warfarin) (Prevent Further Thrombogenesis).

o 2- STAT Revascularisation (*Definitive*) – WITHIN 4 HRS:


- **§ **PCI (Per-Cutaneous Intervention)/Coronary Angioplasty:**
 - Balloon Dilation/Stenting of Coronary Arteries via Femoral Artery
 - OR... Thrombolysis/Fibrinolysis (With TPA "Tissue Plasminogen Activator"/"Alteplase"):
 - Contraindicated in: Hx of CVA, Stroke <3mths, Aortic Dissection, Active Bleeding. +/- CABG:

§

§

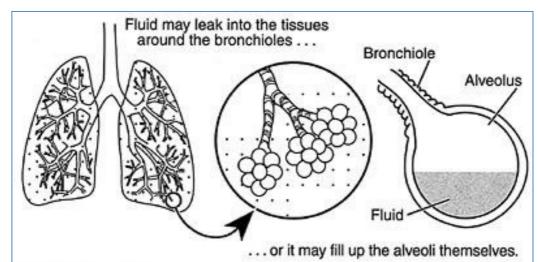
§

ξ

Tomáš Kebert & umimeto.org, CC BY-SA 4.0 < https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Complications:

- Acute Complications:
 - § LV-Failure: → Acute Pulmonary Oedema, Shock (70% Mortality) Lethal Arrhythmias: → VT, VF
 - § Weakening of Necrotic Myocardium → Myocardial Rupture: Tamponade / Acute VSD
 - § Stasis \rightarrow Mural Thrombosis \rightarrow Embolization \rightarrow Stroke
 - §
- Chronic Complications:
 - **§** Ventricular Aneurysm, Papillary Muscle Rupture Mitral regurgitation, CCF.


ACUTE CARDIOGENIC PULMONARY OEDEMA

- Aetiology:
 - o Severe Decompensated LV-Failure (CCF)
- Pathophysiology:
 - o Severe Decompensated LV-Failure (CCF) → Fluid Accumulation in Alveoli & Interstitium→Dyspnoea
 - § →Impaired Gas Exchange & Respiratory Failure
- Clinical Features:
 - o Symptoms:
 - § Tachycardia
 - § Tachypnoea
 - § Diaphoresis
 - § Wet Cough with Frothy Sputum
 - O Signs: Respiratory Distress (↓SpO2)
 - δ_δ Bi-Basilar Crackles
 - Splitting of S2
 - § Dullness to Percussion
 - δ_δ (+/- Signs of RV-Failure [个JVP, Peripheral Oedema, Ascites])
 - §
- Investigations:
 - o CXR (Pulmonary Congestion/Oedema, Cardiomegaly, Effusions)
 - o ECG (Dx Previous/Current IHD, Rule out Arrythmias)
 - 0 Echo (TTE) (Assess Ventricular Function [Ejection Fraction])
 - o +(FBC [↓Hb/Infection], UEC, eLFT [Alcohol], TSH [个Thyroid], Lipids [IHD], BSL/HbA1c [Diabetes])
- Management:

o Pt will most likely already be on CCF Regime. Ie:

- § ACEi (Perindopril) / ARB (Candesartan)
- § **B-Blocker** (Carvedilol)
- § **Diuretics** (Frusemide / Spirinolactone)
- § Fluid Balance (Daily weights/Fluid restriction/ \downarrow Na diet)
- o "LMNOP" Protocol:
 - § L Lasix (**†** Diuresis & Fluid Restriction) [Frusemide / Spirinolactone]
 - § M Morphine (Anxiolytic & Vasodilation)
 - § N Nitrates (GTN)
 - § O Oxygen
 - § P Positive Pressure Ventilation (CPAP / BiPAP)

Source: Unattributable

Frank Gaillard, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

HEART FAILURE

Background:

- **Insufficient Cardiac Output** to meet the demands of the body $\rightarrow \downarrow$ Organ Perfusion
- Note: 30% die within 1yr of Dx.

Signs of \checkmark Cardiac Output:

- Low Arterial Pressure (Due to weaker heart muscle)
- Thready Pulse (Due to Low Arterial Pressure) (A Compensatory Mechanism) [Carotid/Aortic] BaroReceptor-Reflex In Tachycardia (Due to Response to ↓BP) (Also due to the ↑Venous Pressure of Systemic Backlog (↑Systemic Blood Volume) \rightarrow Atrial Stretch \rightarrow Bainbridge Reflex \rightarrow Vagal (Parasympathetic) Withdrawal $\rightarrow \uparrow$ HR) (From \downarrow Tissue Perfusion) (Eg: In Pulmonary Congestion) (Eg: Due to R-Sided Heart Failure) **Exercise Intolerance**
- Difficulty Breathing
- **Peripheral Oedema**

New York Heart Association – 5 Classes of Heart-Failure Symptoms:

- Class 1: No limitation to physical activity
- Class 2: Slight limitation of activity + Dyspnoea & Fatigue with moderate exercise (Eg: Climbing stairs)
- Class 3: Marked limitation of activity + Dyspnoea with minimal activity.
- Class 4: Severe limitation of activity. Symptoms at rest.
- Class 5: Bed confinement. Life support monitoring.

W here is the Failure?:

- @ Myocardial Level (Ie: Systolic/Diastolic Dysfunction (Heart Muscle Itself) $\rightarrow \downarrow$ Pumping Function):
- o (Eg: Ischaemic Heart Disease, Myocarditis, Cardiomyopathies, etc.)
- @ Valvular Heart Level (Ie: A problem with the Heart-Valves $\rightarrow \downarrow$ Pumping Function):
 - o (Eg: Stenosis/Regurgitation)
 - @ Circulatory Level (Ie: Defect in the Peripheral Circulation \rightarrow Vascular System Dysfunction): o (Eg: Haemorrhage/Shock)

Forward/Backward Heart Failure:

- **Forward Heart Failure:**
- o Reduced Output due to Inadequate Discharge of Blood into Arterial System.
 - **Backward Heart Failure:**
 - o Where One/Both Ventricle
 - 1- Fails to Discharge its Contents OR ξ
 - ξ 2- Fails to Fill Normally
 - o Results in \uparrow Atrial Pressure + \uparrow Pressure in Venous System Behind the Failing Ventricle.

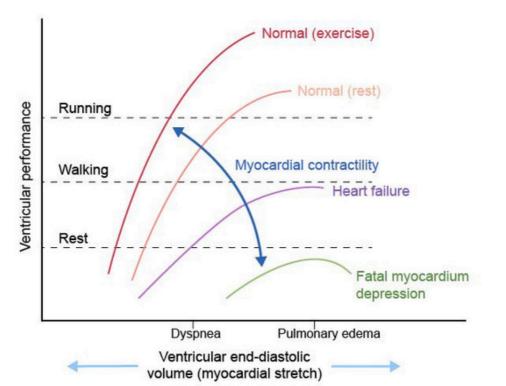
Note: Most Patients Have Both (Because Blood Flows in a Circle)

o Eg: Forward Heart Failure \rightarrow Low Cardiac Output \rightarrow Less Venous Return \rightarrow Backward Heart Failure.

The Body's Responses to Heart Failure:

Short Term (Adaptive):

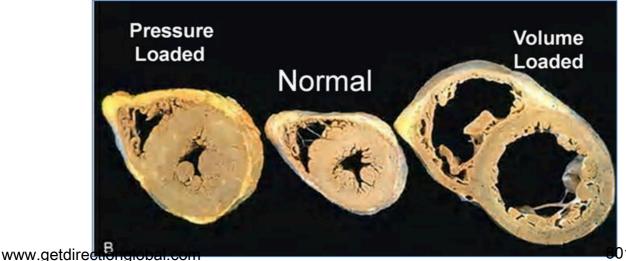
- o **Peripheral Shutdown** (To maintain BP of Vital Organs. $\rightarrow \uparrow$ Afterload)
- o Salt & H2O Retention (To \uparrow Blood Volume $\rightarrow \uparrow$ Preload)
- o **↑Preload** (To 个 Stroke Volume)
- o **↑Sympathetic Tone** (To \uparrow Heart Rate & Ejection)
- o Hypertrophy
- (To \uparrow Muscle Mass to \uparrow Contractile Strength) Long Term (Maladaptive):


o (Over time, the Heart simply can't maintain the compensatory mechanisms of increasing CO)

- o **Peripheral Shutdown** $\rightarrow \uparrow$ Afterload \rightarrow L-Heart Failure
- o Salt & H2O Retention \rightarrow Fluid Overload \rightarrow Pulmonary & Peripheral Oedema
- $\rightarrow \uparrow$ Energy Demand o Increased HR
- → Myocardial Ischaemia + Diastolic Failure o Hypertrophy

3 Compensatory Mechanisms:

- 1- Frank-Starling Law/Mechanism:
 - o " \uparrow Preload $\rightarrow \uparrow$ Stroke Volume"
 - o Incomplete Chamber Emptying $\rightarrow \uparrow$ PRELOAD $\rightarrow \uparrow$ Cardiac Output BY \uparrow STROKE-VOLUME.
 - o BENEFICIAL in Short-Term
 - o DETRIMENTAL in Long-Term
 - **S** Ie: In Severe Heart Failure, Starling Curve is *Flatter* than normal.
 - § \rightarrow Even large Increase in End-Diastolic Volume has *Little Effect* on Stroke Volume & CO.
 - § Also, \uparrow Vent-EDV \rightarrow \uparrow Atrial Pressure \rightarrow \uparrow Pulmonary Pressure


2- Myocardial Hypertrophy:

o Increased Ventricular Mass = Cell Hypertrophy (个Size) & Hyperplasia (个Numbers).

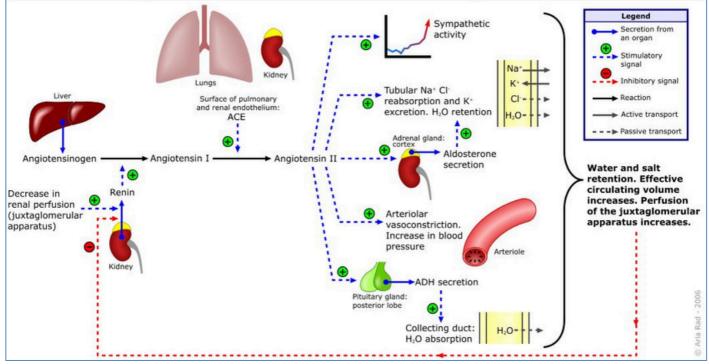
- 0 Pressure Overloaded Hypertrophy:
 - § In response to \downarrow Cardiac Output: When \downarrow CO is due to $\uparrow \uparrow$ Afterload (\uparrow Arterial Pressure)
 - § **"Concentric Hypertrophy":** Muscle Thickens Due to Synthesis of Sarcomeres in **PARALLEL**.
 - \rightarrow Decreased Compliance $\rightarrow \uparrow$ ESV $\rightarrow \uparrow$ Atrial Pressure $\rightarrow \uparrow$ Pul.Pressure.

o Volume Overloaded Hypertrophy:

- § In response to \uparrow Volumes:
- § Ie: \uparrow EDV \rightarrow Ventricle Stretches (Dilates) \rightarrow Cannot Generate Enough Force to Pump Blood.
- § **"Eccentric Hypertrophy":** Heart *Balloons Out* Due to Synthesis of Sarcomeres in *SERIES*.

0 1- Nor-Adrenaline/Epinephrine:

- § Baroreceptors sense \downarrow CO as \downarrow Perfusion-Pressure \rightarrow Stimulates Sympathetic:
 - $\rightarrow \uparrow$ Heart Rate
 - $\rightarrow \uparrow$ Contractility
 - $ightarrow
 ightarrow \uparrow$ Vessel Tone ightarrow To Increase Venous Return
 - $\rightarrow \uparrow$ Preload (\rightarrow SV \rightarrow CO)


O 2- Atrial Natriuretic Peptide:

- § Produced by Heart But has NEGATIVE effects.
- § Released due to High *Filling Pressures* (within heart) Via L-Atrial & Arterial Baroreceptors.
- § Important INDICATOR of Heart Failure
- § Function: \rightarrow Reduce Fluid Retention (Ie: Diuretic)
 - →Vasorelaxation
 - $\rightarrow \downarrow BP$

Therefore Inhibits RAAS.

- →↑Renal Excretion (Na+ & H2O) • o 3- Renin-Angiotensin-Aldosterone System (RAAS)/Anti-Diuretic-Hormone Release:
 - § Due to \downarrow Renal Perfusion-Pressure \rightarrow Stimulates Renin Secretion from Juxtaglomerular Cells.
 - →Vasoconstriction (Angiotensin-II = Potent Vasoconstrictor)
 - $\rightarrow \uparrow$ Fluid Retention (Increases Intravascular Volume)
 - →↑Blood Pressure
 - $\rightarrow \uparrow$ Preload (\rightarrow SV \rightarrow CO)

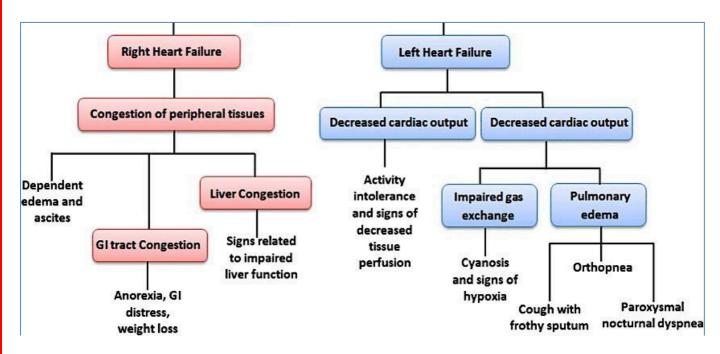
Renin-angiotensin-aldosterone system

A. Rad (me), CC BY-SA 3.0 < http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons

o Note: These Neurohormonal Compensatory Mechanisms = Vicious Cycles:

- § Strain on heart \rightarrow Activation of Neurohormonal Mechanisms $\rightarrow \uparrow$ Preload & BP \rightarrow Extra
- § Strain on the heart. Heart Responds by Remodelling → Larger & Rounder → Weaker.

Heart Failure Can Be LEFT or RIGHT Sided:


Left Heart Failure (LSHF):

- o = ↓L-Ventricle CO into Systemic Circulation
- o Common Causes:

§

- § Systolic Failure: Weak LV (IHD, Dilated Cardiomyopathy, Alcoholism, Myocarditis)
- § Diastolic Failure: Stiff LV (Eg: Amyloidosis, Sarcoidosis, Hypertrophic Cardiomyopathy).
 - Valve Dysfunction: (Aortic Stenosis/Regurg, Mitral Stenosis/Regurg)
- § Excessive Afterload: (Eg: HTN, Coarctation of Aorta, Dissecting AAA)
- 0 Consequences & Clinical Features:
 - § **Pulmonary Congestion** \rightarrow **CCF** \rightarrow Cough/Dyspnoea/Orthopnoea(Pt can't lie flat)/PND.
 - § \downarrow **CO** \rightarrow (Kidneys \rightarrow Pre-Renal Failure), (Brain \rightarrow Irritability, ALOC)
 - § LV-Hypertrophy \rightarrow Initially Adaptive, then Weakens \rightarrow Worse LV-Failure
- Right Heart Failure (RSHF):
 - o = ↓R-Ventricle CO into Pulmonary Circulation
 - o Common Causes:
 - **§** Isolated RHF is Rare (Typically caused by LSHF, Aka. "Cor Pulmonale")
 - § "Cor Pulmonale": LSHF \rightarrow Pulmonary Hypertension \rightarrow RSHF.
 - o Consequences & Clinical Symptoms:
 - § **Pulmonary Congestion** \rightarrow **CCF** \rightarrow Cough/Dyspnoea/Orthopnoea(Pt can't lie flat)/PND.
 - § **PLUS Systemic Congestion** → Peripheral Oedema/Organomegaly/Pleural Effusion/Ascites
- NOTE: L-Failure can often lead to R-Failure:

o Eg: L-Failure \rightarrow Pulmonary Hypertension $\rightarrow \uparrow A$ fterload on R-Ventricle \rightarrow R-Ventricular Failure.

Investigations:

Get Direction GLOBAL

- **B-Natriuretic Peptide (BNP) –** (If >500 = Heart Failure)
- **CXR** (Pulmonary Congestion/Oedema, Cardiomegaly, Effusions)
- ECG (Dx Previous/Current IHD, Rule out Arrythmias)
- Echocardiogram (TOE/TTE) (Assess Ventricular Function [Ejection Fraction])
- +(FBC [Anaemia/Infection], UEC, eLFT [Alcohol], TSH [Hyperthyroid], Lipids [IHD], BSL/HbA1c [Diabetes])

Management of Chronic CCF:

- 1- Correct Systemic Factors & Comorbidities (Eg: Thyroid, Infection, Diabetes, COPD)
- 2- Lifestyle Mods (↓Smoking/Alcohol, Weight Loss)
- **3- Fluid Restriction** (\downarrow Salt Intake, Fluid Restriction, Daily Weights)
- **4- Antihypertensives –** (\downarrow Preload & :. \uparrow CO):
 - **O ACE Inhibitors (Perindopril)/ARBs (Candesartan):**
 - § **MOA:** \downarrow AT-II \rightarrow Vasodilation + \downarrow Fluid Retention + \downarrow SNS $\rightarrow \downarrow$ Preload & \downarrow Afterload
 - § Dose: Start Low & Go Slow.
 - § (Side Effects: Persistent Dry Cough, Postural Hypotension, 个K+, Renal Impairment)
 - o β-Blockers (Carvedilol, Metoprolol, Bisoprolol):
 - § **MOA:** \downarrow Workload of Heart (+ \uparrow Preload \rightarrow \uparrow Cardiac Output) & Triggers Remodelling.
 - § (Side Effects: Postural Hypotension, Dizziness)
- 5- Diuretics (↓Fluid Overload):
 - o Loop Diuretics (Frusemide/"Lasix")
 - O [IF SEVERE] Aldosterone Antagonists (*Spirinolactone*)– (Also K+ Sparing)
- (+/- Digoxin to \uparrow Contractility; or Rate Control in AF) (Symptomatic Improvement, but no \downarrow Mortality)
- (+/- Oxygen if SpO2 <88%)
- (+/- Vasodilators Eg: Hydralazine / Nitrates)
- (+/- Internal Cardiac Defibrillator as 50% of mortality is due to sudden lethal arrhythmias)

Management of Acute, Decompensated CCF:

- As Above (ACEi + B-Blocker)
- + **↑**Diuretics (Frusemide)
- + Digoxin (For Inotropic Support)
- +/- Nitrates

Com plications:

- Sudden Lethal Arrhythmias (VT/VF) → Death
- Acute (Cardiogenic) Pulmonary Oedema (See CVS PATH Acute Cardiogenic Pulmonary Oedema)

CARDIOMYOPATHIES ("HEART MUSCLE DISEASES")

DILATED CARDIOMYOPATHY (Most Common):

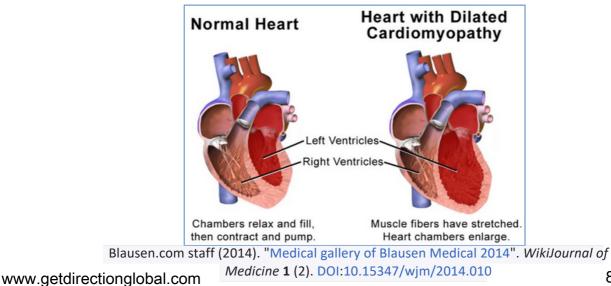
- Aetiology:

- o ***Idiopathic
- o **Chronic Alcoholism
- o *Post-Viral (Myocarditis)
- o Genetic
- o Chemotherapy
- o Chronic Anaemia
- Pathogenesis:
 - o Progressive Dilation & Hypertrophy \rightarrow Systolic Dysfunction.

 - § \rightarrow Mural Thrombi (Can embolise)
 - $\S \rightarrow$ AV-Valve Regurgitation (Due to Chamber Dilation)

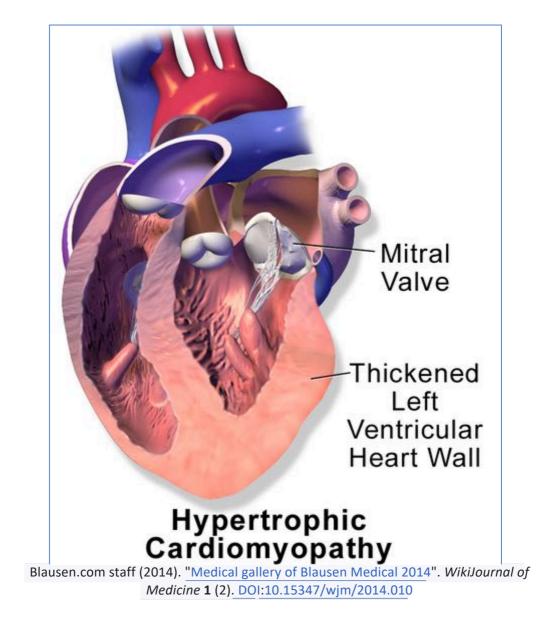
- Clinical Features:

- o Any Age (Incl: Childhood).
- **O** Presentation: Congestive Heart Failure:
 - § Dyspnoea/Orthopnoea/PND
 - § ↓Exercise Tolerance
 - § Fatigue
 - § Wet Cough


- Complications:

- o Mitral Regurgitation
- o Arrhythmias
- o Possible Thrombotic Embolism

- Investigations:


- O ECG
- o **CXR** (Globular Heart)
- 0 Echo (Assess Vent Function)
- Management:
 - o **↓ETOH**
 - **O CCF Triple Therapy:**
 - § ACEi (Perindopril) / ARB (Candesartan)
 - § **B-Blocker** (Carvedilol)
 - § **Diuretic** (Frusemide)
 - o Warfarin (Prevent Thromboembolism)
 - o FluVax & PneumoVax
 - o **→ Heart Transplant
- Prognosis:

o 50% 5yr Mortality Unless Heart Transplant.

HYPERTROPHIC CARDIOMYOPATHY (AKA: HOCM – Hypertrophic Obstructive Cardiomyopath GLOBAL Aetiology: 0 **Genetic **Pathogenesis:** o Genetic Mutation \rightarrow Hypertrophy \rightarrow Diastolic Dysfunction (\downarrow Filling & \downarrow Chamber Size) o Note: End Stage can \rightarrow Focal Ischaemia (Even in absence of Coronary Artery Disease) **Clinical Features & Complications:** CCF (Dyspnoea, Orthopnoea, PND, Cough) o Ventricular Outflow Obstruction \rightarrow Syncope + Harsh Systolic Murmur o Angina o Arrhythmias o Mural Thrombus \rightarrow Embolisation (Eg: Stroke) o Sudden Death

- Investigations:
 - o ECG (LVH, Path Q Waves)
 - o Echo (LVH, Diastolic Dysfunction, Poor EF)
- Management:
 - o **Medical** β -Blockers $\rightarrow \downarrow$ Heart Rate + \downarrow Contractility
 - o Surgical Septal Myomectomy (Relieves the outflow tract obstruction)
 - o +/- ICD (If Arrhythmias)

www.getdirectionglobal.com

8015000900

Get Direction

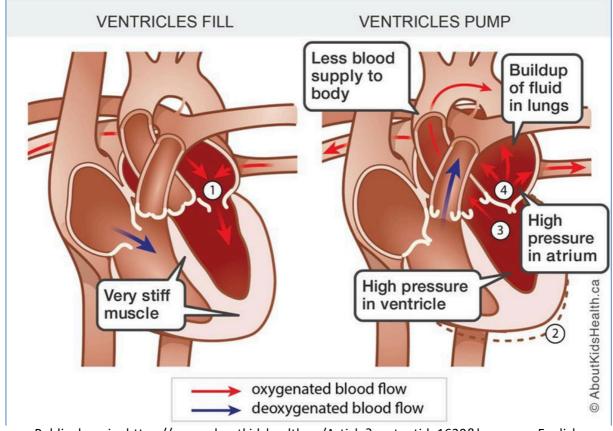
A, The septal muscle bulges into the left ventricle, left atrium is enlarged.B, Extreme hypertrophy, branching of Myocytes, and the characteristic interstitial fibrosis (collagen is blue).

RESTRICTIVE CARDIOMYOPATHY

- Aetiology:
 - o **Amyloidosis/Sarcoidosis/Scleroderma/Haemochromatosis
- Pathogenesis:
 - o \rightarrow Stiffening of Myocardium \rightarrow Diastolic Dysfunction (\downarrow Filling) \rightarrow Heart Failure
 - § Ventricles ≈ Normal Size & Volume
 - § Myocardium is Firm & Non-Compliant
- Clinical Features & Complications:

o Heat Failure Symptoms:

- § Cough, Dyspnoea, PND, Orthopnea
- § Fatigue
- § Chest Pain, Palpitations
- o Signs: Elevated JVP
 - § Lung Crepitations
 - § Peripheral Oedema
 - § Arrhythmias
 - ς, γ
- Investigations:
 - 0 0 **ECG** (Low Voltage)

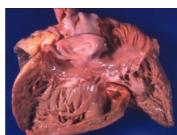

o Mဖိုဆ်အာက်ခြင် Bစ်ခွဲစစ္)(To Determine Aetiology)

Echo – (Diastolic Failure, Poor EF)

- Management:

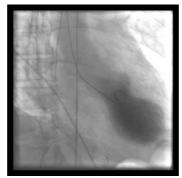
- o Medical:
 - § CCF Triple Therapy (ACEi/ARB + B-Blocker + Diuretics)
 - § Warfarin
 - § +/- Anti-Arrhythmics

O Definitive: Requires Heart Transplant.



Public domain. https://www.aboutkidshealth.ca/Article?contentid=1630&language=English

("COR PULMONALE"):


Yale Rosen from USA, CC BY-SA 2.0 <https://creativecommons.org/licenses/by-sa/2.0>, via Wikimedia Commons

("STRESS CARDIOMYOPATHY"):

- **AKA:**
 - o "Broken Heart Syndrome"
 - o "Takotsubo Cardiomyopathy"
 - o "Apical Ballooning Cardiomyopathy"
 - Aetiology:
 - o (NON-ischaemic)
 - o Stress-Related (High Catecholamines)
- Pathogenesis:
 - o Stress \rightarrow High Catecholamines \rightarrow Coronary Vasospasm \rightarrow Myocardial Stunning
 - § \rightarrow Bulging of the LV-Apex with Hypercontractile LV-Base. ("Octopus Trap" Shape)
- Clinical Presentation & Complications:
 - 0 Acute, Reversible LV Systolic Dysfunction
 - § Sudden Onset CCF
 - § Chest Pain
 - § Dyspnoea
 - o Lethal Ventricular Arrhythmias + Other ECG Changes (Similar to MI)

O Ventricular Rupture

- Investigations:
 - O ECG (ST-Elevation)
 - O Troponins (Elevated)
 - O CXR
 - o Echo (Characteristic Regional Wall Motion Abnormalities)
 - o Serum Catecholamines
- Management:
 - 0 Supportive Therapy
 - 0 CCF Triple Therapy:
 - § ACEi (Perindopril)
 - § B-Blocker (Carvedilol)
 - § Diuresis
 - o Inotropes (If Hypotensive) (Dopamine)
 - O Aspirin
 - o +/- Warfarin

Tara C Gangadhar, Elisabeth Von der Lohe, Stephen G Sawada and Paul R Helft, CC BY 2.0 www.getdirectionglobal.com^{reativecommons.org/licenses/by/2.0>, via Wikimedia Commons 801}

W hat is Hypertension?:

- Consistent Systolic of +140mmHg. AND/OR
- Consistent Diastolic of +90mmHg

Aetiologies & Types:

- 95% = Primary/"Essential"/Idiopathic Hypertension:
 - o Idiopathic Likely multifactorial (not curable)
 - 0 Risk factors for HT:
 - § GENETICS/FamHx
 - § High Cholesterol/Salt Diet
 - § Diabetes/Obesity
 - § Smoking/Alcohol
 - § Stress
 - § Age
 - 0 Subtypes:
 - § Isolated Diastolic HTN (Typically Older Men)
 - § Isolated Systolic HTN (Eg: >160/<90)
 - In Young Adults (Due to Overactive Sympathetic NS → ↑CO)
 - In Older Adults (Due to **\J**Arterial Compliance (Calcification/Fibrosis))
 - 5% = Secondary Hypertension:
 - o Cardio Coarctation, Hypervolaemia, Rigid Aorta
 - o Renal Acute Glomerulonephritis, CKD , Polycystic Kidneys, Renal Artery Stenosis
 - o Endocrine Hyper-Adrenalism, Acromegaly, Hypo/hyperthyroidism, Phaeo, Cushing's.
 - 0 Neurologic Psychogenic, Raised ICP, Sleep Apnoea, Acute Stress
 - o **Pre-Eclampsia:** (10% of pregnancies) Placental Ischaemia \rightarrow Placental vasoactive mediators \rightarrow \uparrow M aternal BP in effort to \uparrow Placental Perfusion.

- (Accelerated/"Malignant" Hypertension):

- o = Rapid ↑in BP (>200/120mmHg) Sufficient to cause Vascular Damage→
 - § **Retinopathy –** (Papilloedema, Haemorrhages, Bulging Discs)
 - § Brain (Mental Status Changes)
 - § **Renal –** (Creatinine Rise)
 - § Rapid Organ Failure
 - § Note: "Malignant HTN" is rare, but can arise in HT of any Aetiology.

O Pathophysiology Not well Understood:

§ Common Causes:

- Cessation of Antihypertensives (Rebound HT)
- Sympathetic Hyperactivity
- Stimulants (Cocaine/Amphetamines)
- Glomerulonephritis (Nephritic Syndrome)
- Head Trauma (个ICP)
- Tumours (Eg: Thyroid, Phaeo, Adrenal)
- Pre-Eclampsia

o Symptoms Include:

- § Vision Disturbance (Papilloedema/Retinal Bleed)
- § Headache, Drowsiness, Confusion
- § Nausea, Vomiting

o Management:

- § Smoothly Reduce BP over 24 to 36 hours to <150 / 90
- § (Note: Excessive reduction may \rightarrow Coronary/Cerebra/Renal Ischaemia)

Clinical Features:

- Symptoms:

- o Typically Asymptomatic (Unless Malignant Headache, Dizziness, N/V, Visual Changes)
- Signs:
 - o **Signs of 10** *causes* Eg: Thyroid, Cushing's, Acromegaly, Polycythaemia, CKD, Pregnancy.
 - o Abdomen: Renal or Adrenal Masses (for possible causes), or for AAA
 - O Renal Bruit: (Renal Artery Stenosis)
- Diagnosis Essential Vs. Secondary?:
 - 0 If Essential HT: Diastolic Pressure will *RISE* on standing.
 - 0 If Secondary HT: Diastolic Pressure will FALL on standing.
- Classification (Adults):

Diagnostic Evaluation:

- >3 Consecutive Readings of >140/>90 over 6mths = HTN
- BUT: Needs to be >*Stage 2* (>160/>100) to Prescribe Antihypertensives.
- +FBC (Eliminate Polycythaemia)
- +Lipids (Screen 个Risk Fx for IHD)
- +UEC (Screen Renal Failure, Electrolyte Disturbances)
- +Urinalysis (Screen Renal Failure & Urine Electrolytes)
- +BSL (Screen Diabetes)
- +ECG (Screen IHD)

Category	Systolic (mmHg)	Diastolic (mmHG)	% Population
Normal	120-140 140-	80-90 90-100	83
Stage 1 Hypertension (Mild)	160 160-180	100-110 110-120	13.5
Stage 2 Hypertension (Moderate)	180-210 ≥210	≥120	2
Stage 3 Hypertension (Severe)			
Stage 4 Hypertension (Severe)			1

MANAGEMENT:

- (Identify & treat underlying causes)
- (Note: Reduction should be SLOW, otherwise can be fatal)
- 1- Lifestyle changes:

o **Reduce Risk Factors** (Eg: Quit Smoking, \downarrow -Fat Diet, \downarrow Alcohol, \downarrow Salt, \uparrow Exercise)

- 2- Treatment drugs (If >Stage 2 [>160/>100]):
 - **o Monotherapy First, Then Add ONE Other (In Order of Recommendation):**
 - § ACEi (Perindopril ["Coversyl"]) / ARB (Candesartan ["Atacand"])
 - (Note: Beware $\downarrow K+$)
 - (Beware Dry Cough)
 - § **Ca-Ch-Blocker** (*Amlodipine* ["Norvasc"] / *Nifedipine* ["Adalat"])
 - § **Thiazide Diuretic** (*Hydrochlorothiazide* ["Amizide"])
 - § (Note: Beware $\downarrow K+$)

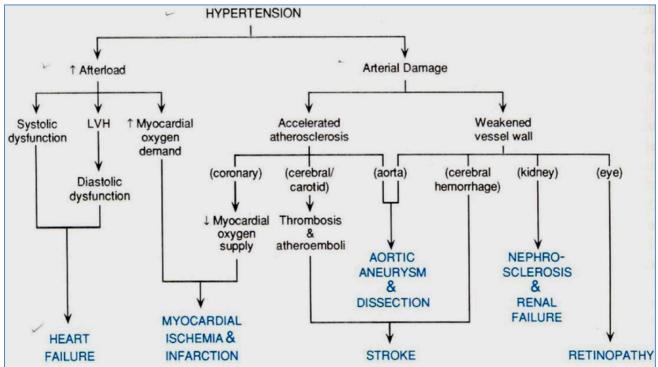
(B-Blocker (*Carvedilol* ["Dilatrend"] / *Atenolol* ["Noten"])**} Now Controversial!** *Only used if Pt also has IHD / CCF.*

o (Therapeutic Target <140/90mmHg or <130/80mmHg in diabetics)

- + (3- Home BP Monitoring):

o If: Non-Compliant / Diabetic / "White-Coat HTN"

Complications of Hypertension:



HTN Is a Major Precursor For:

o CAD/IHD

o Hypertensive Heart Disease (Heart Failure, Hypertrophic Cardiomyopathy)

- oo Sotooke
- o Microting Disserthig "Arteriolosclerosis' (Small Vessel Diseases)
 - PVD
 - **Renal Failure**
- Relationship between *Degree* of hypertension & *Degree* of Complications.

- Heart:
 - o \uparrow Afterload \rightarrow LV-Hypertrophy \rightarrow Eventually Diastolic Failure
 - o **\uparrowWorkload** \rightarrow \uparrow O2 Demand \rightarrow Exacerbated Coronary Ischaemia
- Lungs:

o **Pulmonary Congestion** → Pulmonary Oedema & RV-Hypertrophy

- CerebroVascular:

o *Intracerebral Haemorrhage* (Rupture of Artery/Arterioles in brain)

Aorta/Peripheral Vascular:

o Mechanical Arterial Damage (Eg: Aneurysms/Dissecting Aneurysms/Atherosclerosis)

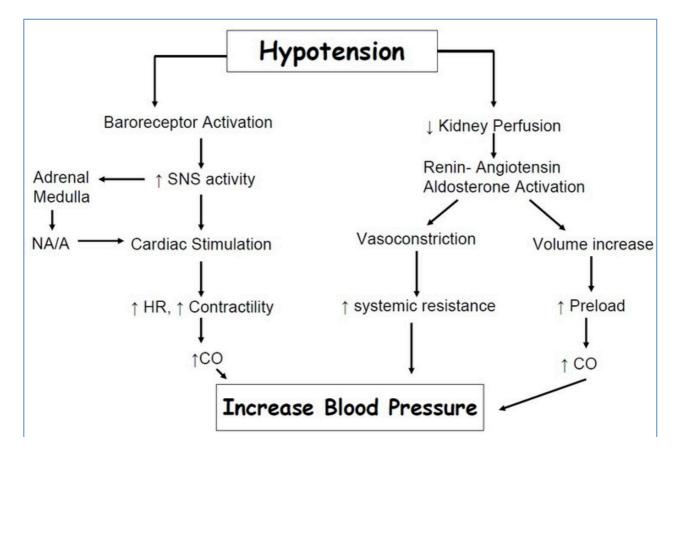
- Kidneys:

o Nephrosclerosis – (hardening of kidney blood vessels) \rightarrow Renal Failure

SHOCK:

Aetiologies:

Hypovolemic Shock:


o Severe Dehydration - (Eg: Sweating, Vomiting/Diarrhoea, DKA & Diuresis, Seeping Burns) o Severe Blood Loss/Haemorrhage

- **Cardiogenic Shock:**
 - o Heart Failure (Eg: Acute MI, Valvular, Cardiomyopathy, Myocarditis)
 - **Distributive Shock:**
 - o **Septic Shock** (Extracellular Fluid Shift \rightarrow Hypotension \rightarrow Shock)
 - o Anaphylactic Shock (Extracellular Fluid Shift \rightarrow Systemic Oedema & Hypotension).
 - o **Neurogenic Shock** (Sudden loss of Vasomotor Tone \rightarrow Massive VenoDilation)
- **Obstructive Shock:**
 - o Massive PE
 - o Cardiac Tamponade (Massive Pericardial Effusion $\rightarrow \downarrow$ Ventricular Filling $\rightarrow \downarrow$ SV & CO)
 - o Tension Pneumothorax

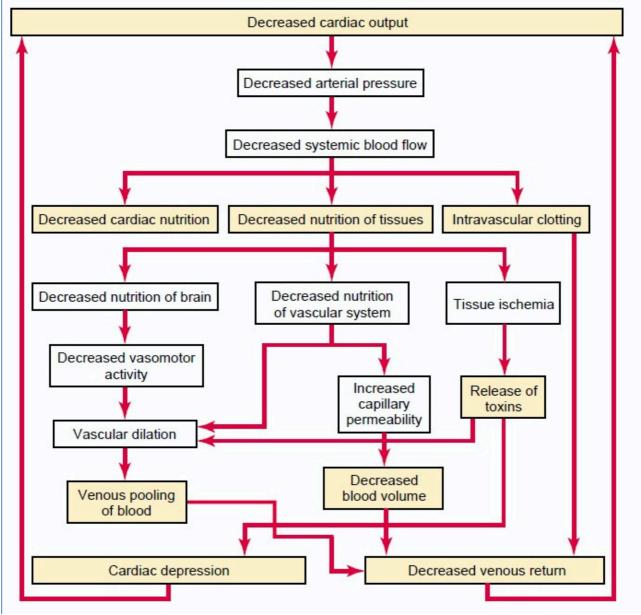
Compensatory Mechanisms:

o "CARDIAC RESERVE" = Maximal % that CO can Increase Above Normal. (Typically 300-400%) o (IMMEDIATE) 个Sympathetic Tone:

- § Baroreceptors $\rightarrow \uparrow$ SNS $\rightarrow \uparrow$ HR & Contractility $\rightarrow \uparrow$ CO
- (DELAYED) Renal: 0
 - § Angiotensin-II \rightarrow General Vasoconstriction $\rightarrow \uparrow$ BP
 - § Vasopressin (ADH) $\rightarrow \downarrow$ Urine Output $\rightarrow \uparrow$ Blood Volume $\rightarrow \uparrow$ BP
 - § **EPO** \rightarrow \uparrow Haematopoiesis \rightarrow \uparrow Blood Volume \rightarrow \uparrow BP

3 Stages of Shock:

- <u>1- Non-Progressive Stage (<15% (<750mL)Blood Loss):</u>


- 0 Stable & Reversible.
- o Signs of Compensated Hypovolaemia:
 - § Tachycardia
 - § Oliguria (Low Urine Production)
- 2- Progressive Stage (15-40% (750-2000mL)Blood Loss):

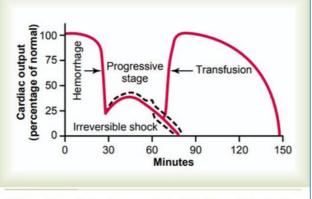
o Unstable, Decompensating, Reversbile.

- o Signs of Decompensation:
 - § Hypotension
 - § *Delayed CRT* (↓Peripheral Perfusion)
 - § Tachycardia
 - § Organ Failure (Anuria, Confusion/ALOC, Heart Failure, Tachypnoea, Acidosis)

o But Still Reversible with Treatment:

- § Reverse Causative Agents + Volume Replacement (Bolus 2L IV) +/- Inotropes
- § (Otherwise Fatal if Untreated)

Abdel-Sater, Khaled. (2011). Physiological Positive Feedback Mechanisms. nwpii.com/ajbms. 3. 10.5099/aj110200145.


3- Irreversible Stage (>40% (>2000mL) Blood Loss):

0 Unstable, Irrecoverable Organ Failure.

o Pt WILL Die – Treatment will delay death, but NO treatment will save Pt's life. o Symptoms:

- Multi-Organ Failure (Renal/Cardiac/Pulmonary/CNS) §
- § Acidosis
- § Anuria
- ξ Coma

Failure of transfusion to prevent death in irreversible shock

Basic Shock Management:

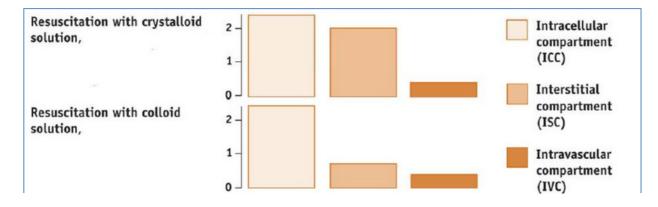
- Hypovolaemic Shock: Recognise Severity, Replace Loss (Normal Saline), Stop Ongoing Losses
 - Septic Shock: Blood Culture, IV ABs, IV Fluids, Inotropes, Vasopressors, Remove Infective Focus
- Anaphylactic Shock:

ABC 10 Assessment, IM/IV/SC Adrenaline, +/- Steroids Cardiogenic Shock: Inotropes, Nitrates/Angioplasty/Reperfusion, Valvuloplasty, Transplant

Mechanical:

Pericardiocentesis, Correct Cause (Trauma/Infection) o Tamponade:

o Pneumothorax: Thoracocentesis (Pleural Tap), Correct Cause (Trauma/Infection/Fluid Overload) o PE: Thrombolysis (TPA/Alteplase), Thrombectomy


FIRST LINE TREATMENT: FLUID REPLACEMENT THERAPY:

Crystalloid Vs. Colloid Solution:

Crystalloids:

- o = Aqueous Solutions of Mineral Salts or other water soluble molecules.
- o Crystalloids have a Low Osmotic-Pressure in Blood due to Haemodilution.
- Colloids:

o = Mixtures of Larger Insoluble Molecules. (Note: Blood *itself* is a colloid) o Colloids Preserve a High Colloid-Osmotic Pressure in the Blood.

Crystalloid Solutions:

- *Saline:
 - o The Most Commonly used Crystalloid.
 - o Advantage Is Isotonic \rightarrow Does not cause dangerous fluid shifts.
 - o Disadvantage If you only replace fluid, O2 Carrying Capacity goes down (Dilution Anaemia)
 - § Also, since it raises Extracellular Fluid, it's not suitable for Pts. with Heart Failure/Oedema. e:
- Dextrose:
 - o Saline with 5% Dextrose Used if Pt is at risk of Hypoglycaemia; or Hypernatraemia.
 - o Note: Becomes Hypotonic when Glucose is Metabolised \rightarrow Can cause fluid overload.

- Lactated Ringer's/Hartmann's Solution:

- o A Solution of Multiple Electrolytes:
 - § Sodium
 - § Chloride
 - § Lactate
 - § Potassium
 - § Calcium
- o Used in Pts with Haemorrhage, Trauma, Surgery or Burns.
- O Also used to Buffer Acidosis

Colloid Solutions:

- Albumin:
 - o Albumin 40g/100ml Used in Liver Disease, Severe Sepsis, or Extensive Surgery.
 - o Albumin 200g/100ml Used in Haemorrhage/Plasma loss due to Burns/Crush Injury/Peritonitis/
 - /Pancreatitis; or Hypoproteinaemia; or Haemodialysis

- Polygeline (Haemaccel):

- 0 = Gelatin Cross-linked with urea.
- o Used in Dehydration due to GI Upsets (Vom/Diarrhoea)

Blood Products:

- Whole Blood:

- o RBCs, WBCs, Plasma, Platelets, Clotting Factors, Electrolytes (Na/K/Ca/Cl).
- o Used to Replace Blood Volume & Maintain Haemoglobin Level ightarrow 102-Carrying Capacity
- RBCs:
 - o Used to Increase Haematocrit (proportion of RBCs) ightarrow
 ightarrow
 ightarrow
 m O2-Carrying Capacity

Plasma:

- o Plasma (With Plasma Proteins), Clotting Factors, Fibrinogen, Electrolytes (Na/K/Ca/Cl).
- o Used to restore Plasma Volume in Hypovolaemic Shock & Restore Clotting Factors.

Fluid Resuscitation Principles:

How Much???

o 1- Bolus (Vol. Of Estimated Acute Losses)

- o 2- Maintenance ***(4,2,1 Rule)***:
 - ج 4ml/kg/hr for 1st 10kg
 - δ 2ml/kg/hr for 2nd 10kg
 - § 1ml/kg/hr for every kg thereafter.
- (le: 60ml/hr for 1st 20kg)
- (Ie: 100ml/hr for 1st 60kg –Plus 1ml/kg/hr onwards)
- What happens to the Different IV Fluids?:

\circ Crystalloids (IV Saline/Hartmann's) \rightarrow Na Redistributed into ECF & Blood due to Na/K-ATPase.

- § (25% remains in Blood)
- § :. Somewhat useful in Pressure Fluid Resuscitation.

\circ Colloid (Albumin, Gelatine) \rightarrow Colloid Is Not Redistributed (Stays in blood).

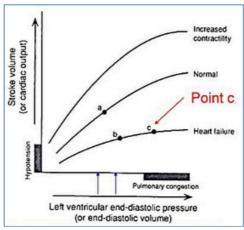
- § (ALL fluid given remains in Circulation) (500mL of Colloid = 2L of Crystalloid)
- § :. Most effective fluid in Pressure Fluid Resuscitation.
- o IV Dextrose \rightarrow Actively taken into cells :. None Remains in Blood.
 - § :. NOT Suitable for Pressure Fluid Resuscitation. (Good for Hypoglycaemia & Post-Surgery)
- Blood:
 - O = The best fluid to replace blood loss
 - o But Saline/Hartmanns or Colloid are still ok.
 - o BUT Blood has risks (immunogenic/infections/etc)

www.getdirectionglobal.com

8015000900

Get Direction

SHOCK CASES:



Case 1 - Bart:

- He is pale and sweaty, has a distended abdomen and obvious bilateral femoral fractures. His pulse is 140 and his blood pressure is 75/40.
- What signs of shock are evident?
 - o Pale and Sweaty
 - 0 Tachycardic
 - o Hypotensive
- What Type of Shock is This?
 - $o \rightarrow$ Hypovolaemic (Haemorrhagic) Shock:
 - § Seems to be bleeding into abdomen \rightarrow Hypovolaemia $\rightarrow \downarrow$ CO \rightarrow Hypotension + Compensatory Tachycardia
- Could Bart be shocked without a change in BP?
 - o Yes. Young, healthy people are able to compensate for up to 1500mL of blood loss by Tachycardia & Vasopression, but then deteriorate rapidly afterwards.
- Is this consistent with our definition of shock ?
 - O No Our definition stipulates a loss of blood pressure.
 - o (Clinically important Need to remember that relying on blood pressure changes alone to diagnose shock means that we will not recognise shock until a patient has lost 30 - 40 % of their blood volume (class 3))
- Initial Treatment:
 - o Fluid Replacement (For Hypovolaemia)

Case 2 – Homer:

- Suddenly collapsed and clutched his chest. He is pale and sweaty. His pulse is 40 and his blood pressure is 85/60. He is feeling short of breath. You note that his JVP is raised. Moe thinks that Homer has had a heart attack.
- What signs of shock are evident?
 - o Pale & Sweaty
 - o Hypotensive
 - o Bradycardic \rightarrow Suggests Cardiogenic Shock
- What Type of Shock is This?
 - $o \rightarrow Cardiogenic Shock:$
 - § Myocardial Infarction \rightarrow Heart Failure (\downarrow CO) & Bradycardia $\rightarrow \downarrow$ BP.
- Homer's ECG has shown an anterior myocardial infarction. Why might this have caused him to be shocked?
- o Myocardial Infarction → Disrupted heart Contraction & Conduction → ↓HR (in this case), and ↓CO
 If Homer has a heart that is not pumping properly (decreased contractility) which direction will his Starling curve move?
 - o His starling curve will shift Downwards (Ie: Stroke Volume & CO will be Less @ any given End-Diastolic Volume)

Initial Treatment:
 O Inotropes
www.getdirectionglobal.com

Case 3 - Marge:

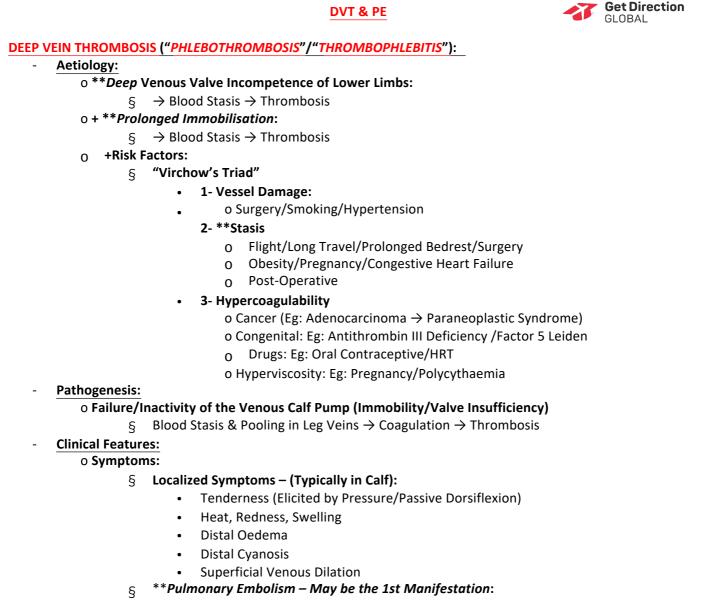
- Marge has bought a special new brand of extra strong hairspray. Begins to feel very itchy and notices small bumps coming up on her head. She collapses. She is conscious but confused. Skin is bright red & covered in raised lumps. Her pulse is 120 and her blood pressure is 90/60.
- What signs of shock are evident?
 - o Tachycardic
 - o Hypotensive
- What Type of Shock is This?
 - $o \rightarrow$ Distributive (Anaphylactic) Shock:
 - § Itchy, red, bumps on skin + History of new Hairspray → Allergy (Systemic release of Histamine & Other Vasoactive Mediators → Loss of Vasomotor Tone → ↓BP & Compensatory Tachycardia.
- What has happened to her:
 - O Venous Tone? Decreased
 - o Venous Capacitance? Increased
 - O Venous Return? Decreased
 - O Preload? Decreased
 - o Stroke Volume? Decreased
 - o Cardiac Output? Decreased
- Why has she collapsed?
 - o Due to Postural Hypotension \rightarrow Hypo-Perfusion of Brain \rightarrow Momentary loss of consciousness. (Regained once supine)
- Initial Treatment:
 - O Adrenaline (For the Anaphylaxis)

Case 4 – Lisa:

- Lisa has been playing her saxophone. She collapsed gasping for breath. Her pulse is 120 and her Blood
 - Pressure is 65/45. Neck veins are distended. No breath sounds on the left side. Tension pneumothorax.
 - What signs of shock are evident?
 - o Tachycardic
 - o Hypotensive
- What Type of Shock is This?
 - $o \rightarrow Obstructive Shock:$
 - § Spontaneous Tension Pneumothorax from Playing Saxophone → ↑Intra-Thoracic Pressure → Inhibits Cardiac Filling (Seen as raised JVP) → ↓CO → Hypotension & Compensatory Tachycardia
- How might Lisa's tension pneumothorax cause her to be shocked?
 - o If pressure in the tension pneumothorax is high enough it may:
 - § Compress (Decrease) Venous Return to the chest & heart $\rightarrow \downarrow$ CO \rightarrow Shock
 - § Shift the Mediastinum such that one/more of the Great vessels gets 'kinked' $\rightarrow \downarrow$ CO \rightarrow Shock
- Initial Treatment:

o Chest Drain – For the Pneumothorax.

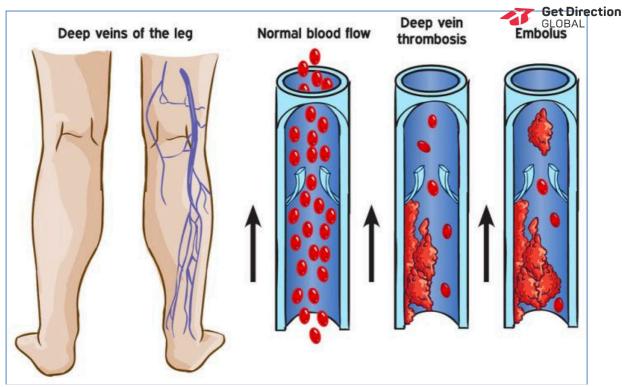
Case 5 - Maggie:



- Her pacifier fell in dog poo and wasn't cleaned properly. Now very sleepy. Her skin is a mottled grey colour. Pulse of 180 and blood pressure is 60/40. Angry inflamed area on her face which has pus in the middle of it.
- What signs of shock are evident?
 - o Tachycardic
 - o Hypotensive
 - o Grey, colourless skin
- What Type of Shock is This?
 - $o \rightarrow Distributive$ (Septic) Shock:
 - § Bacterial infection from dog faeces \rightarrow Endo/Exo Toxin \rightarrow Systemic Cytokine Release \rightarrow Loss of Vasomotor Tone $\rightarrow \downarrow$ BP \rightarrow Compensatory Tachycardia
- How have the following been affected ?

eckerseds tone?

bvesseet dermeability?

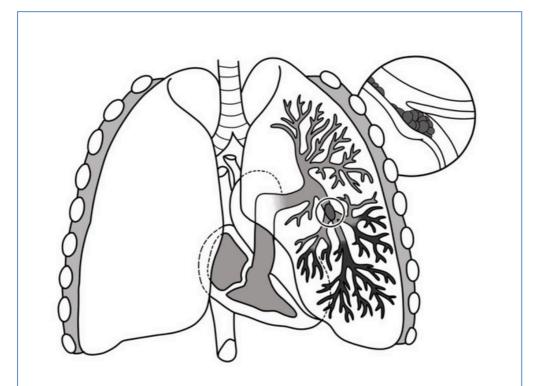

- o Myocardial function? Inotropic
- Initial Treatment:
 - o Antibiotics
 - 0 (Also check Lactic Acid Level):
 - § High levels can indicate severe infection
 - § & Can indicate lack of Tissue Perfusion & Production of Lactic Acid by Anaerobic Metabolic Pathways.

- Thromboembolism into Pulmonary Artery → Biventricular Heart Failure
 o → Sudden Chest pain, Dyspnoea, Haemoptysis, Collapse, Death.
- Investigations:
 - 0 Duplex Doppler USS (93% Sensitive; 98% Specific)
 - Management:

0 **Oral Anticoagulation (or Heparin if contraindicated)

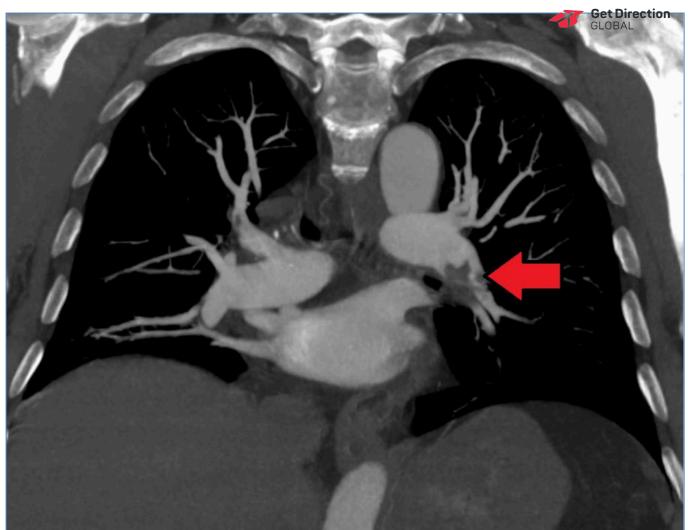
- o +/- Thrombectomy
- o +/- IVC Filter (To Prevent Pulmonary Embolus)

Deep Vein Thrombosis (DVT). Contributed by Creative Commons (CC BY-ND 2.0) https://www.ncbi.nlm.nih.gov/books/NBK470381/figure/article-20301.image.f2/?report=objectonly


James Heilman, MD, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons www.getdirectionglobal.com 8015000900

PULMONARY EMBOLISM

- Aetiology:



- 095% = DVT → Thrombo-Emboli
 - Pathogenesis:
 - \circ DVT \rightarrow Thrombo-Emboli Lodges in Pulmonary Arteries \rightarrow
 - § 1- → VQ-Mismatch → Respiratory Compromise → (Respiratory Failure)
 - § 2- \rightarrow \uparrow Pulmonary Vascular Resistance \rightarrow Haemodynamic Compromise \rightarrow (Heart Failure).
- Clinical Features:
 - o Severity Depends on Size/Number of Emboli (Extent of Obstruction)
 - o If Severe \rightarrow Instant Death!! (Due to sudden Cardiac Failure)
 - o Symptoms →
 - § Pleuritic Chest Pain (+ Pleural Rub)
 - § Dyspnoea/Tachypnoea
 - § Cough/Haemoptysis
 - § (+ DVT Symptoms)
 - O Signs: RV-Failure (个JVP, Tricuspid Regurg)
 - Shock/Syncope
 - § Fever
 - §
- Diagnosis:
 - o **CTPA (CT-Pulmonary Angiogram): Shows Large Emboli lodged in Major Pulmonary Artery
 - 0 ECG: Classical S1Q3T3 Pattern
 - o VQ Scan: Shows VQ Mismatch
 - o CXR (Later >1day): Shows Wedge-Shaped Pulmonary Infarct
- Treatment:
 - 0 0 Give Oxygen
 - o TPA-OnabAnticiosisu(Intinae(no dyapamitci Compraindie) ted)
 - (+/- Trombectomy & IVC Filter)
- Prevention (in High Risk Individuals):
 - o Elastic/Compression Stockings
 - o Anticoagulation
 - 0 If Severe Risk, Insertion of a IVC-Filter

www.getdirectionglobal.com

Baedr-9439, CC0, via Wikimedia Commons

James Heilman, MD, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

CARCINOID HEART DISEASE:

- Aetiology:

- o Cardiac Manifestation of the Systemic Syndrome caused by Carcinoid Tumours.
- Pathogenesis:
 - o Carcinoid Tumour Releases Vasoactive Hormones into Venous Circulation
 - § Serotonin / Bradykinin / Histamine / Prostaglandins
 - \circ Venous Drainage of these Hormones → R-Heart → R-Heart Endocardial & Valvular Fibrosis.
 - § (Generally \rightarrow Fibrosis of R-Heart Valves (Tricuspid/Pulmonary))
- Clinical Signs:
 - o "Carcinoid Syndrome":
 - § Episodic flushing of skin
 - § Cramps
 - § Nausea/Vom/Diarrhoea.
 - o Heart Manifestations (RV-Failure due to..):

§ *Tricuspid Regurgitation (Most Common)

- → Hepatomegaly/Pain
- \rightarrow Pulsatile Liver
- $\rightarrow \uparrow$ JVP with Prominent V-Waves
- \rightarrow Systolic Murmur @ 4th ICS, L-Sternal Border, Louder on Inspiration
- § *Pulmonary Regurgitation
 - → Dyspnoea
 - \rightarrow Diastolic Murmur @ 2nd ICS, L-Sternal Border, Louder on Inspiration
- § (+ Features of RV-F):
 - → Peripheral Oedema
 - \rightarrow Organomegaly
 - → Portal HTN (Caput Medusa, Spider Naevi)
 - $\rightarrow \uparrow JVP$
- Investigations:
 - o 24hr Urinary 5-HIAA (A Serotonin Metabolite)
 - o Abdo CT + Somatostatin Receptor Scintigraphy (SRS) (Tumour Localisation)
 - o Abdo MRI + Contrast
 - O Cardiac Ix (ECG, CXR, ECHO)
- Management:
 - o Medical Somatostatin Analogues (Octreotide)
 - § +/- Interferon-A in Palliative Pts.
 - o Surgery Tumour Resection + Valvuloplasty
- Prognosis:
 - o Can Metastasize :. Early Removal is Essential

(A, Characteristic endocardial fibrotic lesion involving the right ventricle and tricuspid valve. B, Microscopic appearance of carcinoid heart disease with intimal thickening.)

www.getdirectionglobal.com

INFECTIVE ENDOCARDITIS

= Infection of the Endothelial Lining of the Heart (including the heart valves)

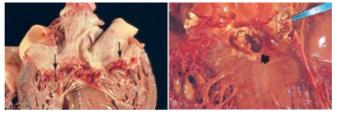
Risk Factors:

o Valve Abnormality – (Valve Murmurs, Calcification, Congenital, Artificial)

- 0 0 Open-Heart Surgery
- o PBacteratentialygiene (Source of Bactesia) -
- (Haemodialysis, IVDU, Surgery) o Immunosuppression

- Aetiologies:

o Subacute Bacterial Endocarditis (Most Common - 50-60% of Cases):


- § (Oral) Strep Viridans/(Surgical) Strep Epidermidis (Low Virulence)
- § **Epi:** Recent Oral Surgery, or Post-Prosthetic Valve Insertion.

0 Acute Bacterial Endocarditis (Rare – 10-20% of Cases):

- § Staph. Aureus (High Virulence 50% Mortality)
- § Epi: IV Drug Users

Pathogenesis:

- o Bacterial Infection of Valves/Endocardium \rightarrow Vegetations on Valve Cusps
 - § Typically Strep. Viridans (Subacute-BE) or Staph Aureus/MRSA (Acute-BE)
 - § Affects Aortic & Mitral Valves; (RH-Valves may be affected in IV Drug Users)

Clinical Signs:

o Symptoms:

- § ****Fever + New Murmur**** = Endocarditis until proven otherwise
- § +Fatigue, Malaise, Weight Loss
- O Physical Signs:
 - § Septic Emboli → Infarcts:
 - Splinter Haemorrhages (In the nail bed)
 - Osler's Nodes (painful erythematous nodules in pulp of digits)
 - Janeway Lesions (Red, nontender lesions on palms/soles)
 - Roth Spots (Retinal Haemorrhages red ring lesions with a yellow centre)
 - § Splenomegaly
 - § Arrhythmia

o Complications – (Begin ≈2wks after onset):

- § **Renal Failure** (Renal Emboli/Immune Complex Deposit \rightarrow Glomerulonephritis, Haematuria)
- § **TIA** (Cerebral Septic Embolism \rightarrow Ischaemia \rightarrow TIA/Stroke)
- § Septicaemia
- § CCF
- Investigations:
 - o **Clinical –** (Fever + New Systolic Murmur +/- Septic Emboli)
 - o 3x Blood Cultures (@ Different Times & From Different Sites Eliminate Contamination)
 - o **ECG** (Rule out Ischaemia/MI/Arrhythmias)
 - o Echo (Valvular Vegetations & Mitral Regurgitation)
- Management:
 - o **2-6wks of High Dose IV** Vancomycin (Initially Empirical; Then Culture-Directed Therapy).
 - o Refer to Cardiac Surgeon (For ?Valve Replacement Surgery?):
 - § If IV-ABs are Unsuccessful.
 - § Or If Valve is Destroyed (Ie: In Acute-BE) \rightarrow Heart Failure
- Prognosis:

o 30% Mortality with Rx.

www.getdirectionglobal.com

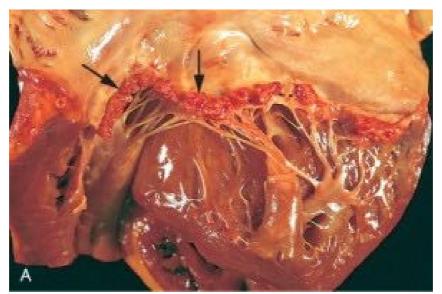
NON-INFECTIVE ENDOCARDITIS (NBTE - Non Bacterial Thrombotic Endocaries) Get Direction

- Aetiology:

- o Hypercoagulable States Eg: DIC, Malignancy, Sepsis, SLE, Pregnancy.
- Pathogenesis:
 - o Deposition of small *Sterile* Thrombi on leaflets of Cardiac Valves (Ie: The suffix "itis" is NOT correct) o **Preference for Valves:** Mitral>Aortic>Tricuspid>Pulmonary
- Clinical Signs:
 - O Signs:
 - **§ Of Hypercoagulable States:**
 - DIC: Acutely III, Shocked, Widespread Haemorrhage (Mouth, Nose, Bruising, Renal)
 - Sepsis: Fever, Acutely III, Shocked, Infective Focus
 - SLE: Fever, Fatigue, Malaise, Butterfly/Malar Rash, Lymphadenopathy, Arthritis
 - Pregnancy: Baby Bump, DVT
 - § Of NBTE:
 - Heart Murmurs
 - Stroke
 - MI
 - _δ If 20 Infective-BE:
 - Fever + New Murmur
 - Septic Infarcts (Splinters, Oslers, Janeways, Roth's, Abscesses, Haematuria)

o Symptoms are those of Systemic Arterial Embolism (Complications):

- § Thrombo-Embolic Infarcts (Eg: Brain \rightarrow Stroke; Heart \rightarrow MI)
- § Secondary Bacterial Colonisation on Vegetations.
- Investigations:
 - o Clinical (Fever + New Systolic Murmur +/- Septic Emboli)
 - o 3x Blood Cultures (@ Different Times & From Different Sites Eliminate Contamination)
 - 0 + Coags Screen!!
 - o ECG (Rule out Ischaemia/MI/Arrhythmias)
 - 0 Echo (Valvular Vegetations)
- Management:


o Treatment of Underlying Aetiology

o Anticoagulant Therapy (Heparin Then Warfarin)

o +(If 2o Bacterial Endocarditis → 2-6wks of High Dose IV Vancomycin)

o Refer to Cardiac Surgeon – (For ?Valve Replacement Surgery?):

- § If IV-ABs are Unsuccessful.
- § Or If Valve is Destroyed (Ie: In Acute-BE) → Heart Failure

www.getdirectionglobal.com

Source: Non-Attributable

LYMPHANGITIS:

- Aetiology:

- o Commonly **8-Haemolytic-Strep** or **Staphylococcus Aureus**
- Pathogenesis:
 - o Bacterial Infection Spread to Lymphatics \rightarrow Acute Inflammation
 - § If Severe \rightarrow Cellulitis/Abscesses
 - § If Very Severe \rightarrow Bacteraemia/Sepsis
- Clinical Features:
 - o Fever/Chills/Malaise
 - o Painful Red Subcutaneous Streaks
 - o Painful Lymphadenitis (Swollen draining lymph nodes)

- Com plications:

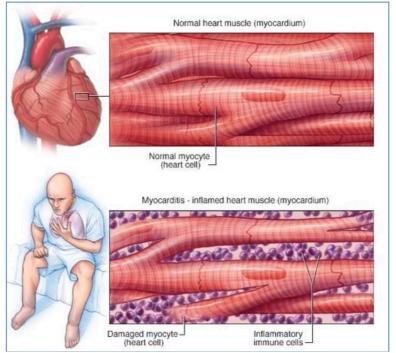
- o Abscesses
- o Cellulitis
- o Sepsis

Investigations:

- 0 Blood Culture + Swab any open wounds.
- o FBC +/- CRP
- Management:
 - o Immobilisation of Limb
 - o Antibiotics
 - o Analgesia

James Heilman, MD, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

MYOCARDITIS – VIRAL & TOXIC:


- W hat is it?

- o "Inflammation of the Heart Muscle"
- o + Characterized by Myocyte Necrosis (Positive Troponin I results seen in 35% of Myocarditis)
- 2 M ain Aetiologies:

ξ

- o VIRAL MYOCARDITIS. (Eg: Coxsackievirus, Rhinovirus, Influenza, Parvovirus B19, Coronavirus)
 - **Either Direct Myocardial Injury OR 20 AutoImmune Response**
 - →Heart Thickens & Weakens → Systolic Heart Failure
- o **TOXIC MYOCARDITIS** (Eg: Chemo Drugs, Cocaine, Alcohol, Diuretics, Antibiotics, Venom, CO, Spike Protein)
 - § Myocardial Damage & Inflammation due to Either:
 - Hypersensitivity to Drugs
 - Direct Toxic Damage
- Clinical Features:
 - o (May be Asymptomatic)
 - o Symptoms:
 - § Flu-Like Syx (Fever, Fatigue, Malaise)
 - § LV-Failure (Dyspnoea/Orthopnoea/PND/Cough)
 - § Chest Pain (Due to Myocarditis +/- Pericarditis)
 - § Palpitations (Arrhythmias)
- Com plications:
 - o **Cardiomyopathy** → Heart Failure
 - o Arrhythmias → Sudden Death
 - o $\textbf{Pericarditis} \rightarrow \textbf{Pericardial Effusion}$
- Investigations:
 - o ECG & Continuous Telemetry
 - o Serial Troponins I/T (Immediately, then @6hrs, then @24hrs)
 - o FBC (\uparrow WCC), CRP (\uparrow), ESR (\uparrow)
 - o CXR (Cardiomegaly)
 - o Echo (Dilated, Poor Vent-Function)
 - Management:
 - 0 0 **Bed Rest

 - o Supportive Rx. (Fluids, Analgesia)
 - o Treat Underlying Cause if Possible

www.getdirectionglobal.com for Medical Education and Research (MFMER); IMG-20456507 8015000900

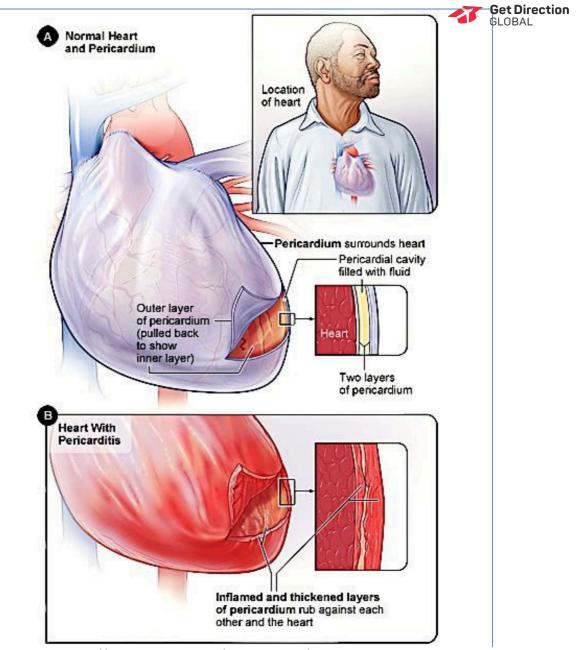
PERICARDITIS:

- **O** Usually Secondary to:
 - § Infection (**Viruses**, Bacteria, Fungi, Parasites)
 - § Immunological (Rheumatic Fever, SLE, Post-MI, Drug Hypersensitivity)
 - § **Other** (MI, Post-Cardiac Surgery, Neoplasia, Trauma, Radiation)
- Classification:

o According to Composition of Pericardial Exudate:

- § Serous (Non-Infectious Inflammatory Diseases SLE, Uraemia, Tumours)
- § **Purulent** (Infective by Microbes)
- § Fibrinous/Serofibrinous (Due to Acute MI, Ch. Radiation, SLE, Trauma)
- § Caseous (Tuberculosis)
- § Haemorrhagic (Due to Metastasis, Cardiac Surgery).

- Pathogenesis:


o Various Aetiologies \rightarrow Inflammation of the Pericardium

- \rightarrow Thickening of Pericardium \rightarrow Pericardial Exudate (Serous Fluid + Pus/Fibrin/Blood)
 - \rightarrow Rubbing of Parietal & Visceral Pericardium \rightarrow Further Inflammation & Exudate.

- Clinical Features & Complications:

o Symptoms:

- § Pleuritic Chest Pain (Better on Sitting Forward; Worse on Inspiration & Lying Down)
- § Fever, Fatigue
- § Dry Cough
- § Syx of CCF (Dyspnoea, Fatigue)
- o Signs: Fever, Tachycardia
 - § Muffled Heart Sounds.
 - § Friction Rub
 - S ↓1∧b
 - S Heart Failure Signs if Tamponade
 - §
- o Complications:
 - § Cardiac Tamponade/Pericardial Effusion
 - § If >3mths \rightarrow Chronic \rightarrow Constrictive Pericarditis (Requires Surgery)
- Diagnosis:
 - 0 ECG (Classical PR-Depression + ST-Elevation + Tachycardia)
 - o CXR (Pulmonary Congestion)
 - o **ECHO** (?Pericardial Effusion)
- Management:
 - o Rx Underlying Cause
 - o Anti-Inflammatories (NSAIDs / Steroids)
 - o Analgesia

https://www.nhlbi.nih.gov/health-topics/heart-inflammation

CONSTRICTIVE PERICARDITIS:

- Definition:
 - 0 Chronic pericarditis resulting in fibrosed, thickened, adherent, and/or calcified pericardium
- Aetiology:
 - 0 Any cause of acute pericarditis may result in chronic pericarditis
 - 0 Major causes are tuberculous, radiation-induced, post-cardiotomy, or idiopathic.
- Symptoms:
 - 0 Dyspnoea
 - o Fatigue
 - o Palpitations
 - o Abdominal Pain
- Signs:
 - O General examination mimics CHF (especially right-sided HF)
 - o § Ie: Ascites, hepatosplenomegaly, oedema
 - 0 Increased JVP, Kussmaul's sign (Paradoxical increase in JVP with inspiration), Friedrich's sign
 - O (Prominent "y" descent > "x" descent)
 Pressures: BP normal to decreased +/- pulsus paradoxus
 Precordial Examination: +/- Pericardial knock (early diastolic sound)
- Investigations:
 - 0 12-lead ECG
 - o § Low voltage, flat T-wave +/- A.Fib
 - 0 CXR Pericardial calcification, effusions
 - 0 §
 - CT/MRI/TEE
 - § Pericardial thickening
 - Cardiac catheterization
 - § Equalization of RV and LV diastolic pressures, RVEDP >1/3 systolic pressure
- Management:
 - O Medical: Diuretics, salt restriction
 - 0 Surgical: Pericardiectomy

PERICARDIAL EFFUSION:

Aetiology:

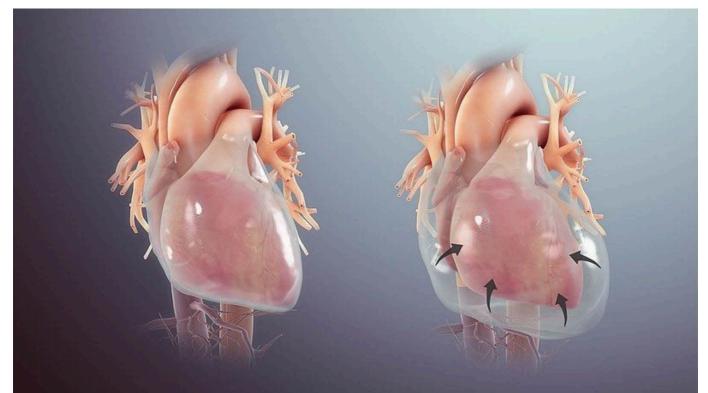
- 2 types of effusions:

- **O** Transudative (Serous):
- 0 § CHF, hypoalbuminemia/hypoproteinemia, hypothyroidism Exudative (Serosanguinous or bloody):
 - § Causes similar to the causes of acute pericarditis
 - § May develop acute effusion secondary to haemopericardium (Trauma, post MI myocardial rupture, aortic dissection)
- Physiological consequences depend on type and volume of effusion, rate of effusion development, and underlying cardiac disease.

Symptoms:

- None or similar to acute pericarditis
- Dyspnoea, cough
- Extra-cardiac (Oesophageal/recurrent laryngeal nerve/traceho-bronchial/phrenic nerve irritation)

Signs:


- JVP: Increased with dominant "x" descent
- Arterial Pulse: normal to decreased normal, decreased pulse pressure
- Auscultation: distant heart sounds +/- friction rub

Investigations:

- 12-lead ECG: Low voltage, flat T-Waves
- CXR: Cardiomegaly, rounded cardiac contour (water bottle)
- ECHO: Fluid in pericardial sac
- Pericardiocentesis: Establishes diagnosis

Management:

- Mild: Frequent observation with serial ECHO, treat the cause, anti-inflammatory agents
- **Severe:** May develop cardiac tamponade.

www.scientificanimations.com, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons 8015000900

CARDIAC TAMPONADE:

General Info:

- Cardiac tamponade is a major complication of pericardial effusion
- Cardiac tamponade is a clinical diagnosis

Pathophysiology:

 High intra-pericardial pressure → decreased venous return → decreased diastolic ventricular filling → decreased CO → hypotension + venous congestion

Symptoms:

- Tachypnoea
- Dyspnoea
- Shock

Signs:

- "x" descent only, absent "y" descent
- Hepatic congestion
- Classic Quartet of symptoms:
 - o 1 Hypotension
 - o 2 Increased JVP
 - o 3 Tachycardia
 - 0 4 Pulsus paradoxus
- Beck's Triad:
 - 0 0 1 Hypotension
 - o 3 -2 Muf¢leed heed tV sounds

Investigations:

- 12-lead ECG:
 - o Electrical alternans (pathognomonic variation in R-wave amplitude)
 - Low voltage
- ECHO: Pericardial effusion
 - 0
 - o Compression of cardiac chambers (RA & RV) in diastolic

- Cardiac catheterization:

o Mean RA, LA, LV, & RV diastolic pressures all high and equal

Management:

- Pericardiocentesis ECHO-/ECG-guided
- Pericaridotomy
- Avoid diuretics & vasodilators (these decrease venous return to already under-filled RV → Decreased LV
- Preload → Decrease CO)
- Fluid administration may temporarily increase CO Treat underlying cause

ACUTE ARTERIAL OCCLUSION ("CRITICAL LIMB ISCHAEMIA"):

General Info:

- Due to embolus, arterial thrombosis or trauma
- Time is of the essence, after approx 6hrs (depending on collateral circulation), ischemia and myonecrosis is irreversible to the limb.

Those caused by Embolus:

- Aetiology:
 - O Cardiac is 80-90% of embolic episodes;
 - § Eg: History of MI (<3mths),
 - § Eg: rheumatic heart disease,
 - § Eg: abnormal or prosthetic valves,
 - § Eg: A-fib,
 - § Eg: cardiomyopathy,
 - § Eg: endocarditis,
 - § Eg: atrial myxoma

Presentation:

- O Sudden pain in lower extremity progressing within hours to a feeling of cold numbness, loss of
- o function & sensation.
- o No history of significant vascular claudication
- 0 Pulses are present in contralateral limb May have emboli to other locations (cerebral, upper limb, renal)

Those caused by Arterial Thrombus:

- Aetiology:
 - 0 It is important to differentiate thrombosis from embolism because the treatment for the two vary
 - o dramatically

Thrombosis usually occurs in a previously diseased (atherosclerotic) artery, congenital anomaly, infection, haematological disorders and low flow rates (CHF)

- **Presentation:**
 - O Gradual progression of symptoms; but may have an acute-on-chronic event
 - 0 Progression to loss-of-function and sensory loss may be less profound than with acute embolus
 - o Past history of claudication
 - Atrophic changes may be present
 - Contralateral disease may be present

Those caused by Trauma:

- Aetiology:
 - 0 Important to determine a history of arterial trauma, arterial catheterisation, intra-arterial drug induced injection, aortic dissection, severe venous thrombophlebitis, prolonged immobilisation, idiopathic.
- Symptoms (6 'P's):
 - O Pain (although may be absent if prompt onset of anaesthesia and paralysis)
 - O Pallor: replaced by mottled cyanosis within a few hours
 - o Paraesthesia: light touch goes first (small fibers) followed by other sensory modalities (large fibers)
 - Paralysis/Power loss: Heralds impending gangrene
 - O Polar (cold)
 - O Pulselessness

Critical Limb Ischaemia (Clinical Context):

Get Direction GLOBAL

- Investigations:
 - O CXR ECG
 - o Arteriography
 - 0
- Management:
 - 0 Immediate heparinization and continuous infusion to maintain PTT >60
 - 0 In the absence of power and sensation Patient needs emergent re-vascularization:
 - § Eg: Embolectomy for embolus
 - § Eg: Bypass if thrombus
 - 0 Continue heparin post op; start warfarin post-op day 1 for 3mths
 - O Amputation if irreversible ischaemia
- Complications:
 - O Compartment syndrome if prolonged ischaemia (may require fasciotomy)
 - o Re-perfusion syndrome (Toxic metabolites from ischaemic muscle → Renal failure & multi-organ system failure)
 - ₀ Emboli Can also Deposit in *Other* Arteries Too:
 - § Mesenteric Ischaemia → Ischaemic Gut (++ Painful + Bloody Diarrhoea)
 - § Renal Artery Thrombosis → Abdo/Back/Flank Pain, ARF, Oliguria, Hypertension
- Prognosis:
 - 0 12-15% mortality rate
 - 0 5-40% morbidity rate (amputation)

PERIPHERAL VASCULAR DISEASE (AKA: Peripheral ARTERIAL Disease

D e fin itio n :

- Obstruction of any of the PERIPHERAL ARTERIES (Not including Coronaries/Aortic Arch/Brain) 0
- Aetiologies:

o **Atherosclerosis (Most Common)

- o (Major Risk Factors):
 - Smoking (10x) the single greatest modifiable cause of PVD. δ
 - § Diabetes
 - § Dyslipidaemia
 - § Hypertension

Pathogenesis:

o Atherosclerosis \rightarrow Obstruction of Peripheral Arteries \rightarrow Chronic Ischaemia

 \rightarrow Eg: Arterial Ulcers, Leg Claudication, Raynaud's Phenomenon. §

Clinical Features:

o Symptoms:

ξ

- (Acute Critical Limb Ischaemia See Prev. Page): §
 - Pain, Pallor, Paraesthesia, Paralysis, Pulseless
 - **Chronic:**
 - Mild-Severe Claudication (Leg Pain/Cramping/Weakness on Exercise) .
 - 0 1- On Exertion (Typically in Calves)
 - o 2- Relived by Rest (2-3mins)
 - o 3- Reproducible (Same "Claudication Distance")
 - o (+ Rest Pain if SEVERE)
 - Distal Pulses Weak/Absent
 - Skin Changes (Hair-Loss, Atrophic Skin, Ulcerations, Gangrene)
 - Other Atherosclerotic Lesions (Impotence, CVD, CAD)

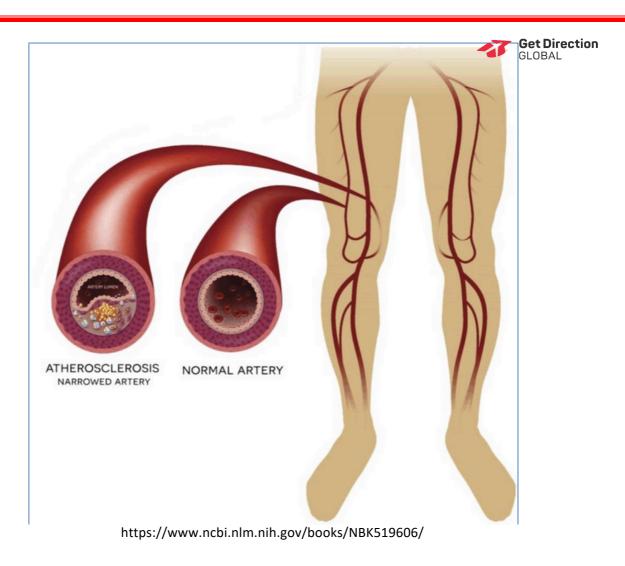
Investigations:

0 Non-Invasive:

- **δ ABI (Ankle-Brachial Index):**
 - Ankle BP <90% of Brachial BP = Abnormal
 - ABI <0.3 \rightarrow "Rest Pain & Night Pain" \rightarrow *(\uparrow Risk of Critical Limb Ischaemia)
- Doppler Ultrasound §
- § **Contrast CT-Angiogram**
- 0 Invasive:
 - **Femoral Angiography (DSA Lab) = Gold Standard ξ
 - (Note: Check for Carotid-Artery Stenosis!!)

Treatment:

O

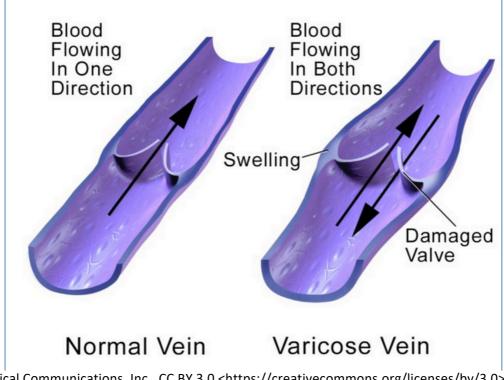

o 1- Conservative Mx Can → 70% Improvement:

- Stop Smoking, \downarrow ETOH, Control Diabetes/ \downarrow Dietary Cholesterol/HTN. ξ
- ξ ↑Exercise
- o 2- Medical Management:
 - Cholesterol-Lowering (Statins/Fibrates/Bile-Resins(Cholestyramine)/Ezetimibe) §
 - Antihypertensives (B-Blockers, ACE-Is/ARBs, Ca-Ch-Blockers) §
 - § **Diabetes Mx**
 - ξ Champix

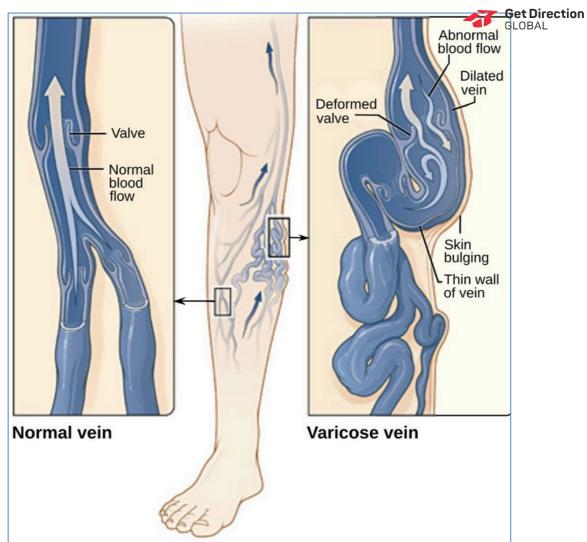
0 3- Surgery:

- Angioplasty (Balloon + Stent) §
- § Bypass Grafting (Eg: Femoral-Popliteal Bypass)
- Plaque Excision (Endarterectomy) §
- ξ Amputation

GLOBAL


- Aetiology:
 - o Mechanical: Prolonged Leg Dependence
 - o (Risk Factors = Obesity, Pregnancy, Familial)
- Pathogenesis:
 - o Superficial Valve Incompetence (Due to Incompetent Valves & Venous Dilation)
 - § \rightarrow Further Venous Stasis, Congestion, Oedema, Pain & Thrombosis.
 - o (Note: Can Also Occur in Oesophagus, Rectum, & Scrotum)
- Clinical Features:
 - o Symptoms:
 - § Diffuse Aching, Tightness & Night-Cramping
 - § Persistent Leg Oedema
 - § \downarrow Wound Healing
 - O Signs: Distended, Tortuous Superficial Veins
 - S Ischaemic Skin Changes (Eg: Stasis Dermatitis)
 - S Venous Leg Ulcers
 - §
 - o Note: Embolism is RARE since only Superficial Veins are affected!!!!

o Complications:

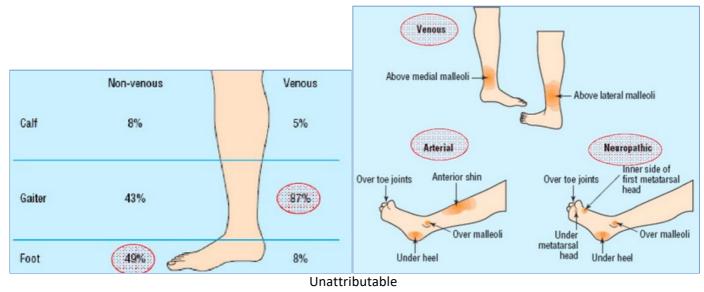

- § Recurrent *Superficial Thrombophlebitis* (See Below)
- § Lipodermatosclerois
- § Haemorrhage
- § Ulceration
- Investigation:
 - o Trendelenberg Test (Pt Supine; Raise leg & occlude Saphenous Vein @ Thigh. Then convert to standing and let go. *If Veins Fill From The Top = Positive Test*)
- Management:

o Conservative: Elevation + Compression Stockings

O Surgical: "Stripping" of Varicose Veins

Blausen Medical Communications, Inc., CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>, via Wikimedia Commons

Jmarchn, modified from Varicose veins.jpg of National Heart Lung and Blood Institute (NIH), CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons


www.getoirectionglobal.com https://creativecommons.org/licenses/by/4.0, via Wikimedia Cogorog00900

CHRONIC SKIN ULCERS (Lower Limbs Most Common):

- Locations:

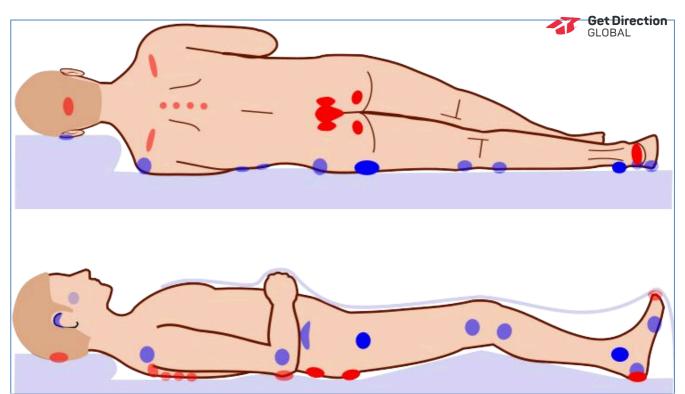
- 0 Venous "Gaiter" Region
- 0 Arterial Foot Region, Anterior Shin & Pressure Points
- 0 Neuropathic Pressure Points

Venous (70% of vascular ulcers)	Arterial	Diabetic	
Irregular wound margins	Even wound margins	Irregular wound margins	
Superficial	Deep	Superficial	
Moderately painful	Extremely painful	Painless	
Yellow exudate + granulation tissue	Dry / necrotic base	Necrotic base	
Gaiter distribution	Distal locations	Pressure point distribution	
Venous stasis discoloration	Thin shiny dry skin	Thin dry skin	
Normal distal pulses	Decreased distal pulses	Decreased pulses	
No rest pain	Claudication / rest pain	No claudication / rest pain	

PRESSURE ULCERS:

O Aetiology:

- 0 § Long-Term Pressure (Elderly, frail, bedridden, paraplegia, coma)
- **O** Pathogenesis:
 - § Long-term skin pressure \rightarrow Skin Ischaemia \rightarrow Necrosis \rightarrow Ulcer


Clinical Features:

- **S** Location & Appearance:
 - Bony Prominences (sacrum, coccyx, heels, occiput, knee, elbow)
 - Initially Non-blanching Erythema → Wet, oozing ulcer.
 - Pain: Often Painful unless Neuropathic/Paraplegia/etc.


o Treatment:

§

- § Pressure Redistribution (Regular Turning, Air Mattress)
- § Debridement & Dressings
- § Antibiotics

Jmarchn, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

Babagolzadeh, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

ARTERIAL ULCERS:

O Aetiology:

- § Arterial Insufficiency (PVD) (Typically due to Atherosclerosis)
- § **Common in Diabetes

0 Pathogenesis:

- § Arterial Insufficiency \rightarrow Tissue Hypoxia/Ischaemia \rightarrow Skin Necrosis + \downarrow Wound Healing
- § (Note: Often occurs following Trivial Trauma or Localised Pressure)
- O Clinical Features:
 - § Locations:
 - Anterior Shin
 - Pressure Points of Ankle & Foot (Bony Prominences)
 - § Appearance:
 - Superficial
 - Well Defined Edges
 - Pale, Non-Granulating Base (Often Necrotic)
 - Does not bleed to touch
 - *No surrounding dermatitis (As opposed to Venous Ulcers)
 - (Cold, Pale feet + Absent Pulses)
 - § Symptoms:
 - **Severely Painful Relieved by Depression
 - (+ Claudication)

o Management;

§ (DO NOT use Compression Bandage!!)

- § Control Risk Factors (Smoking/Diabetes/Hypertension/个Lipids)
- § Clean Wound +/- Debride
- § Reperfusion (Surgery/Angioplasty)

Bondegezou, CC BY-SA 4.0 < https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Intermedichbo - Dr Milorad Dimić, Serbia, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

www.getdirectionglobal.com

VENOUS ULCERS:

0

0 Aetiology:

- § Venous Valve Insufficiency of the legs \rightarrow Sustained Venous Hypertension § (May be Associated with *Varicose Veins*)
- **O** Pathogenesis:
 - § Venous Insufficiency of legs \rightarrow Venous Hypertension & Stasis \rightarrow Ulceration Clinical Features:
 - § Location & Appearance:
 - "Gaiter" Region Above Malleoli
 - Wet, Oozing**
 - Moist, Granulating Base Bleeds on touch.
 - Surrounding "Stasis Dermatitis" (Eczematous)
 - Oedematous
 - Presence of Varicose veins
 - § Symptoms:
 - **Only Mild Pain Relieved by Elevation
 - Dependent Oedema
 - § Treatment:
 - Compression Bandage
 - Elevation @ Rest
 - Exercise
 - Clean Wound

Profwilliamcastro, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Ravipeenya, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

- NEUROPATHIC ULCERS:

- O Aetiology:
- **O** § ****Diabetic Neuropathy + **Arterial Insufficiency**
 - Pathogenesis:
 - § **Diabetic Neuropathy** \rightarrow Damage/Injury goes Unnoticed \rightarrow Further Tissue Damage/Necrosis
 - ς (+ Arterial Insufficiency \rightarrow Tissue Hypoxia/Ischaemia \rightarrow Tissue Damage/Necrosis)
- **O** Clinical Features:
 - **S** Location & Appearance:
 - Occurs over Pressure Points
 - Deep, "Punched-Out" ulcers
 - ***Often with surrounding Calluses (Hyperkeratosis)
 - Don't Bleed to Touch
 - Symptoms:
 - **Painless

o Treatment:

§

- § (DO NOT apply Compression Bandage!!)
- Debride (+/- Amputation)
- Antibiotics
- Fastidious Foot Care (Clean Wound, Podiatrist)
- Control Other Risk Factors Esp. Diabetes (+ Smoking/Hypertension/个Lipids)

Mark A. Dreyer, DPM, FACFAS, CC BY 4.0 < https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

TUMOURS OF VESSELS

- HAEMANGIOMA:

- **o** = Closely Packed Aggregates of Sub-Cutaneous Capillaries filled with Blood.
- o Congenital & Benign

M. Sand, D. Sand, C. Thrandorf, V. Paech, P. Altmeyer, F. G. Bechara, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

Gstk, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

PYOGENIC GRANULOMA:

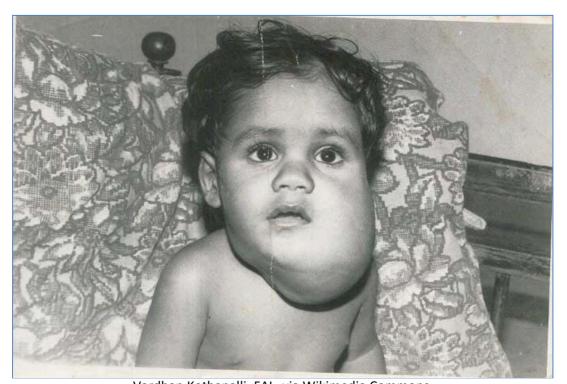
- o = A Granulating Haemangioma
- o Rapidly Growing Cutaneous/Mucosal Red Nodule (Bleeds Easily & Often Ulcerated.)
- 0 Consist of Capillaries, Granulation Tissue & Bacteria
- o Often follow Trauma (Inflammatory tissue due to injury)

Alborz Fallah, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

www.getdirectionglobal.com

TELANGIECTASIA:

o = A Tiny AV-Malformation


- 0 Blanching, Spider-Like, Red Lesions.
- o Composed of Capillaries, Venules & Arterioles.
- o (Usually in Skin/Mucous Membranes)

Klaus D. Peter, Wiehl, Germany, CC BY 3.0 DE <https://creativecommons.org/licenses/by/3.0/de/deed.en>, via Wikimedia Commons

- LYMPHANGIOMA:

- **o** = Benign Lymphatic Version of a *Haemangioma* (= Aggregations of Lymphatic Vessels)
- o May be "Simple" (Capillary) Lymphangioma; or "Cavernous" Lymphangioma ("Cystic Hygroma").

Vardhan Kothapalli, FAL, via Wikimedia Commons www.getdirectionglobal.com

- KAPOSI SARCOMA ("ANGIOSARCOMA"):

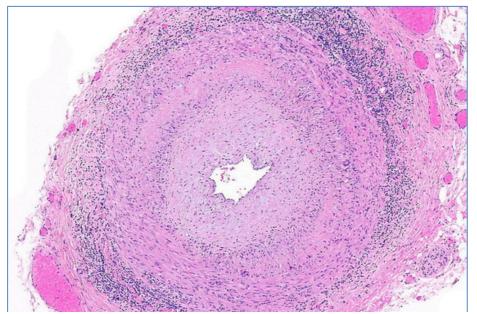
- o = Highly Malignant Endothelial Tumour Caused by HHV-8 Infection.
- o Typically in Terminal AIDs Pts (Or other Immunodeficiency)
- o Early Stages = Asymptomatic \rightarrow Surgical Excision effective.
- o Late Stages = Metastatic \rightarrow Chemotherapy Required.

https://upload.wikimedia.org/wikipedia/commons/1/1c/Kaposis_sarcoma_01.jpg

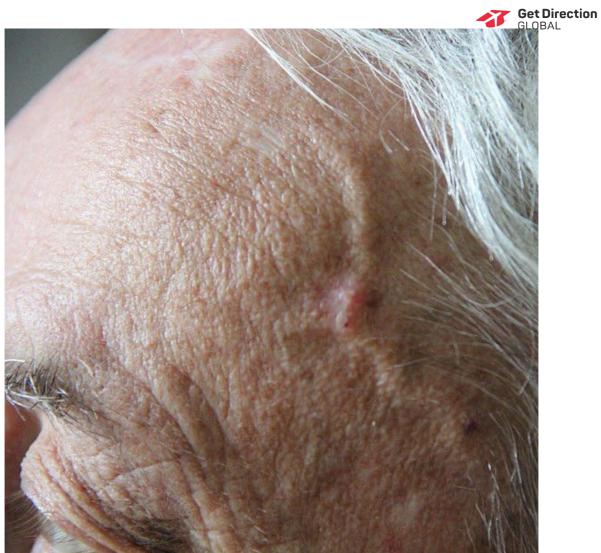
https://upload.wikimedia.org/wikipedia/commons/3/3a/Kaposis_Sarcoma_Lesions.jpg

Yale Rosen from USA, CC BY-SA 2.0 < https://creativecommons.org/licenses/by-sa/2.0>, via Wikimedia Commons www.getdirectionglobal.com 8015000900

IMPORTANT VASCULITIDES


Vasculitis (General Vessel Inflammation):

- (There are ≈20 different forms of Vasculitis We'll focus on the most common ones)
- 2 Aetiologies:
 - o Immune...OR...Infective
 - o (Note: MUST distinguish between aetiologies since treatments Contradict each other)
- Signs/Symptoms:
 - o Generals Fever, Malaise, Myalgias & Arthralgias.
 - 0 Specifics Depend on Vessels Affected.


VASCULITIS IN LARGE ARTERIES:

** GIANT CELL (TEMPORAL) ARTERITIS:

- Aetiology:
- o Chronic, Autoimmune Disease of TEMPORAL and OPHTHALMIC Arteries
- Pathogenesis:
 - o Autoimmune Inflammation of Temporal & Ophthalmic Arteries
 - **Clinical Features:**
 - o (Typically in >50yo's)
 - o Temporal Arteritis Triad:
 - § 1- Headaches
 - § 2- Jaw Claudication
 - § 3- Tender Temples
 - o + Fever, Fatigue, Weight Loss
 - o +/- Sudden Painless Blindness (Transient or Permanent)
 - o Sometimes "Polymyalgia Rheumatica" (Neck, Shoulder & Hip Pain/Stiffness)
- Complications:
 - o **RED FLAG If Untreated, can → BLINDNESS
 - O Aortic Arch Syndrome → Aortic Aneurysm +/- Rupture.
- Investigation:
 - o ↑ESR + ↑CRP → **Temporal Artery Biopsy
 - **§** (Note: Biopsy = Definitive Diagnosis)
 - 0 +/- Cranial Angiography
- Treatment:
 - 0 High-Dose Prednisone
 - o (+/- Azathioprine or Methotrexate if severe)

Nephron, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons www.getdirectionglobal.com 8015000900

Opzwartbeek, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

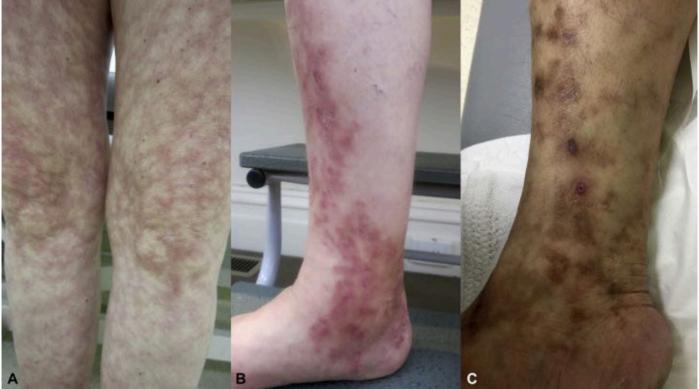
VASCULITIS IN MEDIUM-SIZED ARTERIES (MUSCULAR ARTERIES):

POLYARTERITIS NODOSA:

Aetiology:

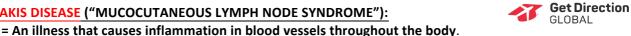
- o SYSTEMIC Autoimmune Inflammation of Medium Arteries.
- Pathogenesis:
 - o Immune Complex Deposition in Arteries (Particularly Renal Arteries)
 - \rightarrow Necrosis of Vessels \rightarrow Rupture/Thrombosis/Aneurysms \rightarrow Infarct/Ischaemia. §
- **Clinical Features:**

o General Symptoms:


- **Fever ξ
- § Rash
- § Malaise
- § Weight Loss

o Organs-Specific Symptoms:

- Skin Palpable Purpura, Ulcers §
- § End-Arteries – Gangrene, Digital Infarcts
- § Muscles – Myalgia
- § Joints - Arthralgia
- § Kidneys - Hypertension
- § Heart – Angina, MI, CCF
- § GIT – Abdo Pain, Haematemesis, Malena, Ischaemic Gut
- § Liver – Jaundice
- § Neuro – Peripheral Neuropathy, Paraesthesia, Weakness
- **Complications:**


o Rupture/Thrombosis/Aneurysms → Localised Infarct/Ischaemia

- Investigation:
 - 个ESR + 个CRP
 - 0 Vascular Biopsy
 - o Or Angiogram
- Treatment:
 - 0 Prednisone
 - o + Cyclophosphamide (Chemotherapy)

www.getdirectionglobal.com://www.jaad.org/article/S0190-9622(19)32992-5/fulltext

KAWASAKIS DISEASE ("MUCOCUTANEOUS LYMPH NODE SYNDROME"):

- Aetiology:
 - o Most common type of vasculitis in children
 - o Usually self-limited
- **Risk Factors:**
 - o Infants, children < 5 years old, Asian descent, biologically male
 - **Complications:**
 - o Coronary artery aneurysm
 - o Decreased myocardial contractility \rightarrow heart failure
 - o Myocardial infarction (MI)
 - o Arrhythmias
 - Peripheral artery occlusion 0
- Signs/Symptoms:
 - o First Phase (Lasts for up to 2 weeks) Mnemonic: "Crash + Burn"
 - Conjunctivitis: bilateral, nonexudative ξ
 - § Polymorphous Rash: desquamating
 - § Cervical lymphAdenopathy
 - § Strawberry tongue: cracked red lips, oral mucositis Hand-foot erythema/ desquamation:
 - § oedema, erythema
 - Fever: "burn" (Typically lasts for 5 days)
 - Second Phase (Usually begins around 2 weeks after fever): 0
 - Peeling skin on hands & feet §
 - Joint pain §
 - § Diarrhoea/vomiting
 - § Abdominal pains
- **Diagnosis:**
 - o Clinical Diagnosis If 4 of the 5 'CRASH' symptoms are present + fever of >5days
 - o ECG Arrhythmias, Abnormal Q-waves, Prolonged PR & QT Intervals.
 - o CXR Cardiomegaly
 - o ECHO Check for coronary artery aneurysms, pericardial effusions, & reduced contractility.
 - o Bloods \uparrow CRP, ESR, platelet count (reactive thrombocytosis)
- Treatment:
 - o Aspirin
 - o IVIG (Intravenous Immunoglobulin)

Signs & Symptoms of Kawasaki Disease

https://kdfoundation.org.au/

Images courtesy of the Kawasaki Foundation

www.getdirectionglobal.com

VASCULITIS IN SMALL ARTERIES (CAPILARIES & ARTERIOLES):

WEGENER'S GRANULOMATOSIS:

- = Small-vessel vasculitis involving nasopharynx, lungs, kidneys
- Aetiology:
 - o Autoimmune (Probably Hypersensitivity to Inhaled Agents)

Pathogenesis:

o Autoimmune Hypersensitivity Reaction to Inhaled Agent \rightarrow Necrotizing Lung Granulomas (~TB)

- § (Also Renal → Glomerulonephritis).
- Morphology:

o Granulomatous Inflammation in Lungs & URT

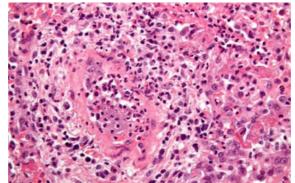
- § URT Mucosal Granulomatous Lesions
- § Granulomas (which may cavitate) in the Lungs

o Necrotizing Vasculitis around Small Vessels (Particularly Renal/Glomerular).

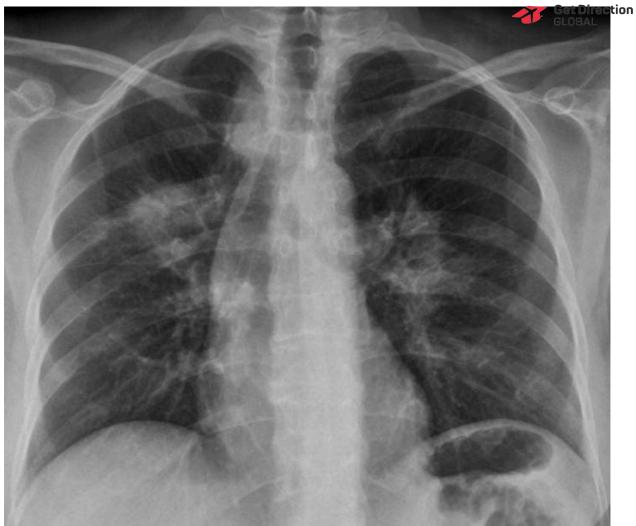
- § Focal (early) or Diffuse (late) Glomerular Necrosis → *Glomerulonephritis*
- Clinical Features:
 - o Systemic:
 - § Fever, Malaise, Weakness, Myalgia, Rash.
 - **O** Respiratory:
 - § Initially (Flu-like Illness):
 - Fever
 - Cough
 - Rhinorrhoea
 - Otitis Media

S Later – (Similar Features to TB):

- Haemoptysis
- Chronic Pneumonitis
- Bilateral Cavitary Granulomas in Lungs
- Chronic Sinusitis
- O Renal:
 - § Glomerulonephritis (Nephrotic +/- Nephritic Syndrome)
- Investigations:


o American College of Rheumatology Criteria – (>2 of):

URTI Inflammation – (Nasal/Oral) CXR – (Ngodules/Cavitations) Urinalysig – (Protein/Casts) Biopsy –g(Granulomatous Inflammation)


0 + c-ANCA in 90% of cases

- o **ተESR & ተCRP**
- Treatment:
 - o Prednisone (+/- Cyclophosphamide/Rituximab)
 - o +/- High-Dose Methotrexate
 - o (Note: 80% 1yr Mortality if Not Treated)

G ranulom atous inflam m ation around sm all vessels w ith epithelioid cells and giant cells.

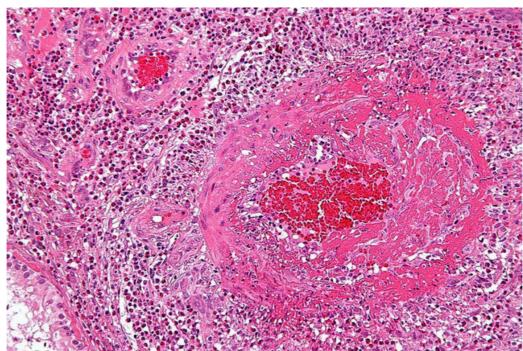
www.gellaheonoAgRbbaA.eomhttps://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Co8015000900

Tom Buur, CC BY-SA 4.0 < https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

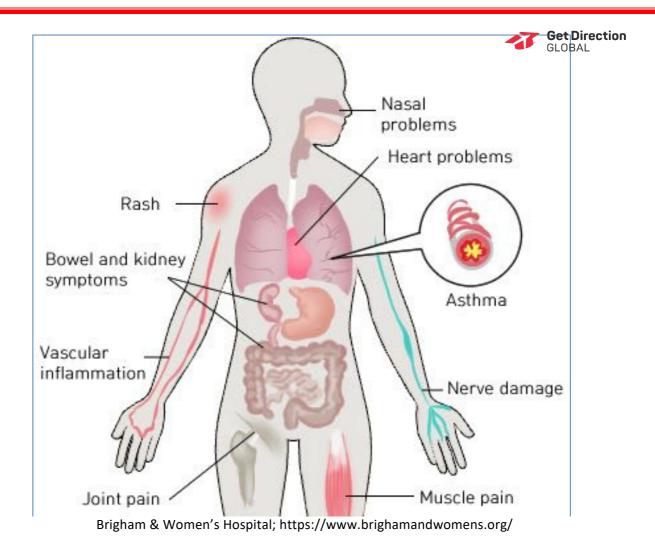
- o Unknown
- Pathogenesis:

o Granulomatous Inflammation of Small/Medium-Sized Vessels.

- o involving many organ systems
 - § cardiac,
 - § gastrointestinal,
 - § respiratory,
 - § skin,
 - § renal,
 - § neurologic
- Clinical Features:
 - O Age 30–50
 - 0 Churg-Strauss Triad:
 - § Systemic Vasculitis
 - § Asthma
 - § Allergic Rhinitis


o Others - (Angina, Myocarditis, Neuropathy, Subcutaneous nodules, Palpable Purpura)

- Investigation:
 - 0 + P-ANCA
 - o + MPO-ANCA Antibodies
 - o 个ESR & CRP
 - o **FBC (**Eosinophilia**)**

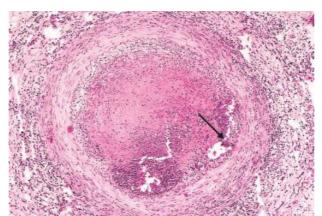

o **CXR** - Transient, patchy, symmetrical opacities, often in hilar/peripheral distribution o **Pulmonary Function Tests** – Obstructive Picture consistent with asthma.

- Management:
 - Prednisone +/- Cyclophosphamide
 - o **Then** *Methotrexate*
- Prognosis:

o Poor - five year survival, 25% without treatment; 50% with treatment

Nephron, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

BUERGER'S DISEASE ("THROMBOANGIITIS OBLITERANS"):


- Aetiology:
 - o **Cigarette Smoking ightarrow Direct Endothelial Toxicity

Pathogenesis:

- o inflammatory disease affecting small-, medium-sized veins, arteries of extremities → inflammatory occlusive throm bus → distal extrem ity ischem ia, digit ulcers/ gangrene → autoam putation o Strongly associated with Smoking.
- Clinical Features:
 - o ***Occurs in Chronic HEAVY Smokers
 - 0 0 Digital Infarcts Gangrene & Ulceration
 - o Distriction decisarentiales (Claudication, Arterial Ulcers, Gangrene) o
 - Paraesthesias of extremities o Raynaud phenomenon
- Diagnosis:
 - o Angiogram can be helpful to rule out atherosclerosis
 - 0 But Biopsy is definitive.
 - § acute-phase lesions show highly cellular, inflammatory thrombus with minimal inflammation of blood vessel
- Treatment:
 - o Smoking Cessation (In early stages) \rightarrow Dramatic Relief.

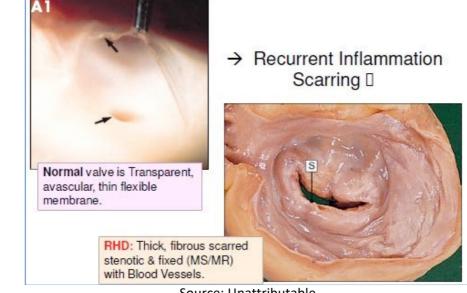
Onthelist, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

(Lumen is occluded by thrombus containing abscesses (arrow), and the vessel wall is infiltrated with leukocytes.) www.getdirectionglobal.com

RHEUMATIC FEVER & RHEUMATIC HEART DISEASE

- Background:

o **Rheumatic Fever (RF)** = Delayed Autoimmune Complication of a GAβH Strep Tonsillo/Pharyngitis.


- o → Acute Rheumatic Fever / Carditis (Acute Phase of Rheumatic Fever)
- o → Chronic Rheumatic Heart Disease (RHD) (Typically → Mitral Stenosis)
- o (Note: Rheumatic Fever (RF) & Rheumatoid Arthritis (RA) are 2 different diseases)
 - § *RF* Licks joints but bites heart! (Temporary Arthritis, but Permanent Valvular Damage)
 - § RA Licks heart but bites joints! (Mild Myocarditis, but permanent Severe Arthritis)
- Aetiology 3 Factors:
 - o 1- Environmental factor Group-A-Beta-Haemolytic Strep (Pyogenes) Pharyngitis
 - 0 2- Genetic Susceptibility (3% of Population) HLA DR-2 & DR-3 Positive
 - o 3- Autoimmunity Autoantibodies (Antigenic Mimickery)

§ GABH-Strep \rightarrow Production of Anti-M-Protein Ab's \rightarrow Cross React with Cardiac Conn. Tissue.

- Pathogenesis → M itral Stenosis:
 - 0 1- GABH Strep Pharyngitis (In HLA-DR2/3-Positive Person)
 - o 2- 2wks Later, Immune Response to GABH-Strep→ Rheumatic Fever → Carditis
 - § (Note: 2wk Delay due to Lymphocyte Activation)
 - o 3- Subsequent GABH-Strep Infections \rightarrow Secondary (STRONGER) Immune Responses:
 - § **Recurrent Rh-Fever** → Cumulative Valve Damage (Fibrosis) → **Rheumatic Heart Disease**

Mp3car, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

Source: Unattributable

www.getdirectionglobal.com

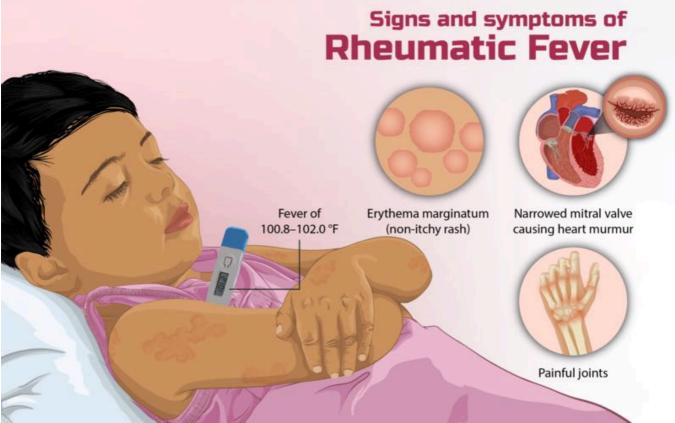
Clinical Features & Diagnosis:

o Acute Rheumatic Fever:

o Jones Criteria Rules - Must Have:

- 1) Evidence of *Previous* GABH-Strep (Strep. Pyogenes) Infection
 - 2) (2x Major Criteria) OR (1 Major + 2 Minor)

O 1- (Evidence of Previous Strep Infection):


- § 个Anti-Streptolysin-O Titre
- § **^**Anti-DNaseB Antibodies
- § Positive Throat Swab Culture
- o 2a. (Major Criteria)

§ §

- § J Joints (Migratory Polyarthritis Not necessarily arthralgia)
- §Y Carditis (Incl: Pericarditis Friction Rub, Quiet Heart Sounds, Tachy)
- § N Nodules (Subcutaneous, painless, on extensor surfaces)
- § E Erythema Marginatum (Non-Pruritic, Tinea-like Rings on Trunk & Limbs)
- **S** Sydenham's Chorea (Rapid, Involuntary Movements)

§ 2b. (Minor Criteria)

- § (Fever)
- § (Arthralgia)
- § (Elevated ESR)
- § (Prolonged PR-Segment)

https://www.myupchar.com/en, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

o Chronic Rheumatic Heart Disease:

- § Cardiac Murmurs (Typically L-Heart):
 - § Mitral Stenosis (+/- Regurg)
 - § Aortic Stenosis (+/- Regurg)
- § Mitral Stenosis:
 - → "Mitral Facies" (Malar/Butterfly Rash over Cheeks & Nose)
 - \rightarrow Mid-Diastolic Rumbling Murmur (Loudest @ Apex on Expiration & \rightarrow Axilla).
 - → Pulmonary Congestion & CCF (RV-Hypertrophy, Exertional Dyspnoea)
 - Atrial Fibrillation (From Atrial Stretch due to Mitral Stenosis)
- § **↑**Risk of Infective Endocarditis
- Management:

o (Primary Prevention – Rx of Strep Pharyngitis):

- § 10days PO Penicillin-V (Or Amoxicillin or Cephalexin)
- 0 Secondary Prevention:

§

- § Admit on Suspicion:
 - Based on Jones Criteria
- S Treating Acute Rheumatic Fever:
 - GABH Strep Eradication (Single dose IM Benz-Pen-G)
 - Joint pain (Arthralgia) (NSAIDs or Codeine).
 - **Chorea** (*Carbamazepine* or *Valproate* if Necessary)
 - **Carditis/Heart Failure** (ACEi + B-Blocker + Diuretics)
- **§** Treating to *Prevent Recurrent Attacks*:
 - Continuous AB-Prophylaxis for Minimum 10 years after last ARF Episode.
 - o ***First-line: Monthly IM Ben-Pen-G
 - 0 **Second-line: BD Oral Pen-V
 - o *(If Penicillin Allergy: BD Oral Erythromycin).
- **O** (Tertiary Prevention):
 - § Cardiac Surgery Mitral Valve Replacement

Question - What is the difference between Rheumatic Fever (RF) & Rheumatic Heart Disease (RHD)?

- 0 (Note: Neither RF or RHD is an Infection, and Both can affect the Heart.)
 - § (The Distinction is whether it is *Reversible* (RF) or *Irreversible* (RHD).)

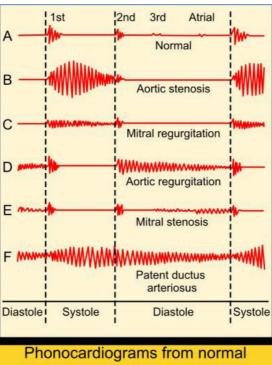
o Rheumatic Fever:

- § An acute, *Post*-GAS-Infection Inflammatory Disease.
- § Occurs a few weeks *After* a GAS Infection.
- § If not treated aggressively \rightarrow Acute Rheumatic Carditis \rightarrow Valvular Deformities.

o Rheumatic Heart Disease:

§ The Chronic Stage which causes Irreversible Myocardial Damage & Heart Valve Damage.

VALVULAR HEART DISEASE & MURMURS


VALVULAR HEART DISEASE:

- 4 Most Common Murmurs & Their Causes:

Valve Lesion	Aetiology/Pathological Cause	
Mitral Stenosis	**Rheumatic Fever (Post Inflamm. Scarring)	
Mitral Regurgitation	Mitral Prolapse ("Myxomatous Degeneration")	
	Rheumatic Fever (Post Inflamm. Scarring)	
	Infective Endocarditis	
	MI (Papillary Muscle Fibrosis/Dysfunction)	
	Rupture of Papillary Muscles/Chordae Tendineae	
	Dilated Cardiomyopathy (Dilation of Valve Annulus)	
	Congenital (Degeneration of Cusps)	
Aortic Stenosis	Age-Related Calcification	
	Rheumatic Fever (Post Inflamm. Scarring)	
Aortic Regurgitation	Age-Related Dilation of the Ascending Aorta	
	HT-Related Dilation of the Ascending Aorta	
	Rheumatic Fever (Post Inflamm. Scarring)	
	Infective Endocarditis	
	M arfan's Syndrom e	
	Syphilitic Aortitis	
	Rheumatoid Arthritis	
	Ankylosing Spondylitis	
-	(Red = Most Common)	

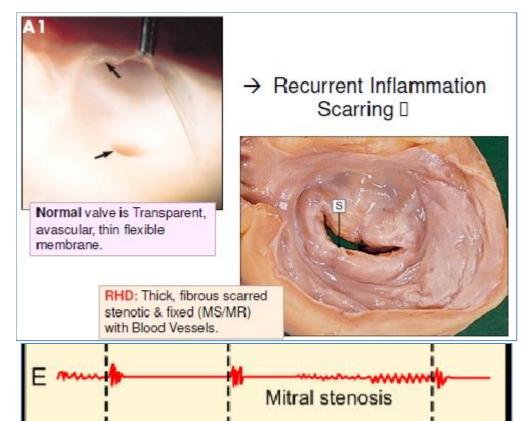
- Other Less Common Murmurs:

	Cause	Diastolic/Systolic?
Pulmonary Stenosis	Congenital Heart Defect	Systolic
	Rheumatic Heart Disease	
Pulmonary Regurgitation	Pulmonary Hypertension	Diastolic
Tricuspid Stenosis	Rheumatic Fever	Diastolic
Tricuspid Regurgitation	R-Ventricular Dilation (Eg: R-V Infarction)	Systolic

and abnormal heart sounds

www.getdirectionglobal.com https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Com 50000000

MITRAL STENOSIS:


- Aetiology:
- o 99% Rheumatic Heart Disease
- Pathogenesis:

o Recurrent Acute Rheumatic Fever ightarrow Autoimmune Mitral Valve Fibrosis ightarrow Stenosis

- **Clinical Features**
 - o Symptoms:
 - § CCF (Exertional Dyspnoea/Orthopnoea/PND/Wet cough (Pulmonary Oedema))
 - 0 Signs: Low-Volume Pulse
 - § **Mid-Diastolic Rumbling Murmur** (Loudest @ Apex on Expiration & \rightarrow Axilla).
 - § "Mitral Facies" (Malar/Butterfly Rash over Cheeks & Nose)
 - **Pulmonary Congestion & CCF** (RV-Hypertrophy, Exertional Dyspnoea)
 - § If Cor-Pulmonale (RV-Failure) \rightarrow (\uparrow JVP, Pulsatile Liver, Ascites, Peripheral Oedema)
 - ξ
- Investigations:

o ECHO – (Diagnostic)

- o ECG (May have A.Fib, LA-Hypertrophy, RVH)
- o CXR (LA-Hypertrophy, Pulmonary Congestion)
- Management:
 - o **Medical** Treat A.Fib, Warfarin, CCF Triples (ACEi + B-Blocker + Diuretics)
 - o Surgical Mitral Valvuloplasty (Repair) or Replacement

Madhero88, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

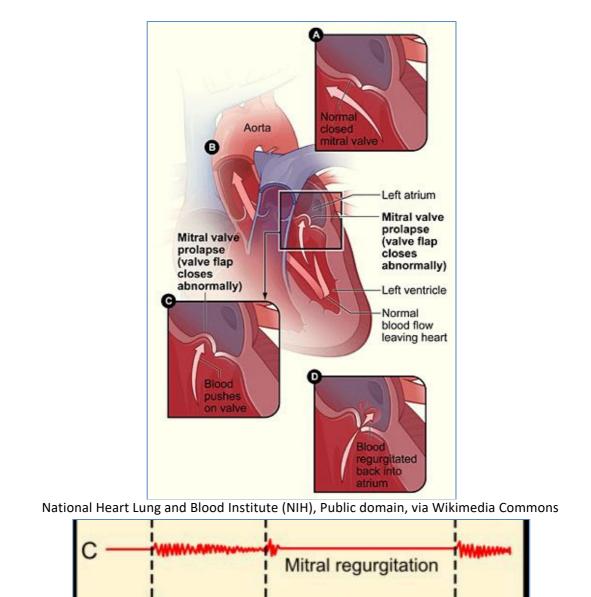
MITRAL INCOMPETENCE/REGURGITATION:

- Aetiology:

o Myxomatous Degeneration, Rheumatic Fever, Infective Endocarditis or Ischaemia

Pathogenesis:

o Myxomatous Degeneration – (Pathological weakening of valve connective tissue) o Rheumatic Fever → Autoimmune Mitral Valve Fibrosis → Stenosis & Regurg o Infective Endocarditis → Vegetations on Valve Edges → Improper Closure → Regurg o Ischaemia – (Post MI Papillary Rupture → Ballooning of Mitral Valve during Systole)


- Clinical Features & Complications:

o Symptoms:

- § Exertional Dyspnoea
- § Wet Cough (Pulmonary Oedema)
- O Signs: High-Pitched Pansystolic Murmur (Loudest @ Apex on Expiration → Axilla) S L-Parasternal Heave (L-Atrial Hypertrophy)
 - §
- Investigations:

o o ECHO – (Diagnostic)

- o CXRCG (±AHA) HL/H/H)ulmonary Congestion)
- Management:
 - o Medical CCF Triples (ACEi + B-Blocker + Diuretic)
 - o Surgical Mitral Valvuloplasty (Repair) or Replacement

Madhero88, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons www.getdirectionglobal.com

AORTIC STENOSIS:

Aetiology:

o Age-Related Calcification (Wear & Tear)

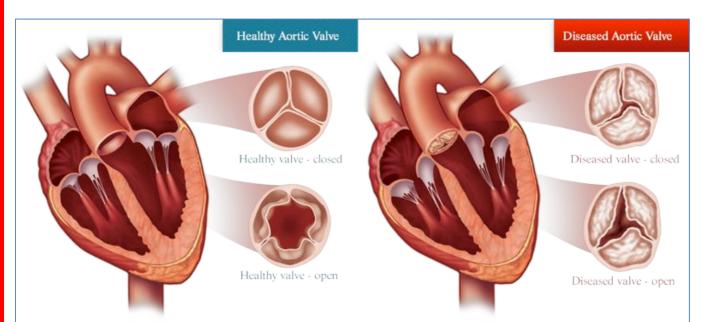
o (Also Rheumatic Heart Disease in 10% of cases)

- Pathogenesis:
 - o Wear & Tear Degeneration + Calcification.

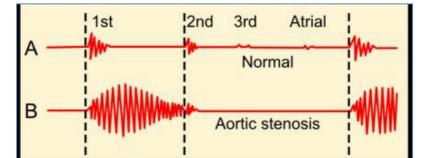
Clinical Features:

o Symptoms:

- § ** "Aortic Stenosis Triad"**:
 - 1- Angina (Due to LV-Hypertrophy & **†**Demand)
 - 2- Exertional Dyspnoea (Due to Congestive Heart Failure)
 - 3- Syncope/Dizziness (Due to ↓Cerebral Perfusion)
- O Signs:
 - § **LV-Hypertrophy** \rightarrow Displaced Apex Beat.
 - § Loud Ejection Systolic Murmur +/- Thrill (Loudest @ 2ndICS R-Sternal Border)
 - Worse on Expiration
 - Radiates to Carotids
 - § **Congestive Heart Failure** → Dyspnoea + Pulmonary Oedema
- Investigations:


o **ECHO –** (Diagnostic)

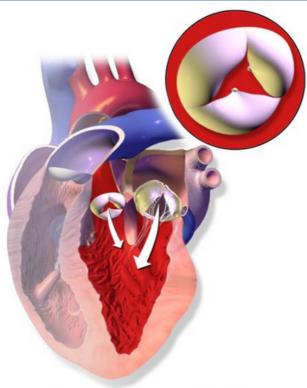
- o **ECG –** (LV-Strain & LVH)
- o CXR (Calcified Valve, LVH, CCF/Pulmonary Oedema)


- Management:

o If Symptomatic → Requires Cardiac Surgery:

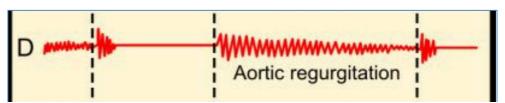
- § Aortic Valve Replacement.
- § Or Balloon Valvuloplasty

SuneErichsen, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons



Madhero88, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons www.getdirectionglobal.com 8015000900

AORTIC INCOMPETENCE/REGURGITATION:



- Aetiology:
- o **Age/Hypertension/"Syphilitic Aortitis"** → Aortic Root Dilation
- Pathogenesis:
 - o Dilation of Aortic Root \rightarrow Valve Leaflets Misalignment \rightarrow Aortic Regurg
 - Clinical Features & Complications:
 - o Symptoms:
 - § Aortic Triad:
 - 1- Angina (Due to LV-Hypertrophy & 个Demand)
 - 2- Exertional Dyspnoea (Due to Congestive Heart Failure)
 - 3- Syncope/Dizziness (Due to ↓Cerebral Perfusion)
 - O Signs:
 - § "Waterhammer Pulse" (Bounding and Rapidly Collapsing)
 - § Displaced Apex Beat (Due to LV-Hypertrophy)
 - § Diastolic Decrescendo Murmur (Loudest @ R.2ndICS on Expiration)
 - § Tachycardia (Compensation for \downarrow CO)
- Investigations:
 - 0 ECHO (Diagnostic)
 - 0 **ECG –** (LAH + LVH)
 - o CXR (LAH + LVH, CCF/Pulmonary Oedema)
- Management:
 - o **Medicine:** Vasodilators + CCF Triple Therapy (ACEi + B-Blocker + Diuretic) o **Surgery:** Aortic Valve Replacement

Aortic Regurgitation

"Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436., CC BY 3.0 via Wikimedia Commons

www.gettheetiengfobategreaters://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia ውስተውወር0900

TRICUSPID VALVE DISEASE:

Aetiology:

0

- 0 Tricuspid Stenosis:
 - § Rheumatic, congenital, carcinoid syndrome, fibroelastosis

Tricuspid Regurg:

§ RV dilatation (commonest cause), Infective Endocarditis, Rheumatic, Ebstein anomaly, AV cushion defects, carcinoid, tricuspid prolapse, trauma.

- Symptoms:

- 0 Right Heart Failure:
 - § Fatigue
 - § Pedal oedema, abdo pain (liver congestion), ascites
 - § Dyspnoea (may reflect right heart forward failure)
- Signs:
 - o Carotid Pulse: Irregular if A-fib and low volume
 - O JVP:
 - § Increased JVP
 - § Prominent 'A' waves in Tricuspid Stenosis
 - § Large 'V' waves in Tricuspid Regurg
 - § Positive Kussmaul's sign (rise in JVP with inspiration)
 - 0 Precordial palpation: Left parasternal lift in Tricuspid regurg

O Precordial auscultation:

- § (Note: all right sided sounds are louder with inspiration, except a pulmonary ejection click)
- § Tricuspid Stenosis: Diastolic rumble in 4th left intercostal space
- § Tricuspid Regurg: Holosystolic murmur along left lower sternal border; may have an ejection murmur

- Investigations:

- 0 12 lead ECG:
 - § Tricuspid Stenosis: Right Atrial Enlargement
 - § Tricuspid Regurg: Right Atrial Enlargement, Right Ventricular Hypertrophy, A-Fib
- 0 CXR: Tricuspid Stenosis: Dilatation of right atrium without pulmonary artery enlargement
 - § Tricuspid Regurg: Right atrial and right ventricle enlargement
 - § Diagnostic
- O ECHO:

§

Management:

0 Supportive:

- § Diuretics, preload reduction
- § Surgery usually determined by need for other interventions

PULMONARY VALVE DISEASE:

- (Much less commonly involved)
- Aetiology:
 - o Pulmonary Stenosis: Usually congenital; uncommonly rheumatic; carcinoid
 - o Pulmonary Regurg: Secondary to dilatation of valve ring
 - § Pulmonary HTN (Mitral stenosis, COPD, recurrent PE
 - § Rheumatic
 - § Infective endocarditis
- Symptoms:
 - o Chest pain, Syncope, Dyspnoea, Leg Oedema (RV failure and CHF)
- Signs:
 - o Pulmonary Stenosis:
 - § Systolic murmur (maximum at 2nd left intercostal space)
 - § Pulmonary ejection click; normal/loud/soft P2; right sided P4
 - 0 Pulmonary Regurg:
 - § Early diastolic murmur at base
 - § Graham Steel (diastolic) murmur at 2nd and 3rd left intercostal space increasing with inspiration.
- Investigations:
 - o 12-lead ECG:
 - o § Right ventricular hypertrophy
 - CXR: Prominent pulmonary arteries if pulmonary HTN
 - § Enlarged Right Ventricle
 - § Diagnostic RVH, RV dilatation
 - o ECHO Doppler
 - §
 - §
- Management:
 - o Infective endocarditis prophylaxis
 - o Pulmonary Regurg:
 - § Rarely requires treatment (well tolerated if systemic vascular resistance is normal)
 - § Valve replacement may be required
 - o Pulmonary Stenosis:
 - § Balloon valvuloplasty, depending on severity

CARDIOVASCULAR RISK FACTORS

OVERWEIGHT & OBESITY:

The General Effect of Obesity on the Body:

- \uparrow Fat Mass $\rightarrow \uparrow$ Blood Vessels $\rightarrow \uparrow$ Peripheral Vascular Resistance $\rightarrow \uparrow$ Strain on the Heart $\rightarrow \uparrow$ CVD
- \uparrow Fat Mass \rightarrow \uparrow Body Weight \rightarrow \uparrow Wear & Tear on Joints (Particular weight-bearing) \rightarrow Arthritis
- \uparrow Fat Mass \rightarrow Endocrine Imbalances \rightarrow Glucose Tolerance \rightarrow Diabetes.
- Many More Ie: The Whole Body has to work harder to compensate.

What is a Healthy Weight?

- BMI:
 - o Normal = 18.5-24.99
 - o Overweight = >25.00
 - o Obese = 30.00→

Waist Circumference:

- o Better than BMI
 - o Abdominal Adiposity, Regardless of BMI, Increases Risk of Certain Obesity-Related Conditions.
 - o Note: Fat deposited elsewhere (hips/buttocks) seems to be less of a risk.

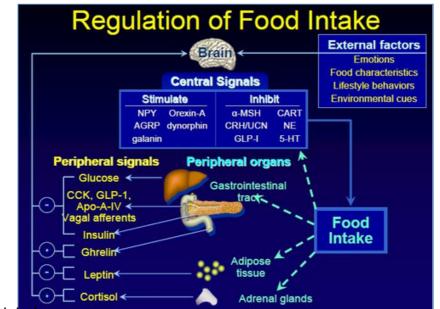
o Healthy Measurements:

- § Women: Waist Circumference of 88cm or Less.
- § Men: Waist Circumference 94cm or Less.

Regulation of Appetite:

- Central Signals:

o Appetite Stimulating


- § Neuropeptide Y
- § Agouti Related Peptide

0 Appetite Inhibiting

- § A-MSH
- § 5HT
- § NE

- Peripheral Signals:

- **O** Positive Feedback:
 - § Ghrelin
 - § Cortisol
- **0** Negative feedback:
 - δ Leptin
 - § Insulin

Get Direction

Managing Obese Patients:

- Weight loss improves all of:
 - o Cholesterol
 - o Glucose tolerance
 - o HBA1C
 - o Blood lipids

- Obesity Treatment Pyramid:

o Lifestyle Mods at the foundation (Nutrition/Dieting & Physical Exercise)

- o Pharmacotherapy
- o Surgery (at the top)

- Nutritional Advice & Food Diaries:

o Useful for recording what/how much/where/ate too much?/calories etc.

o Also useful for monitoring alcohol intake

0 Note: There is NO particular *Diet* that is proven to cause weight loss:

- § Instead, it is an Energy Balance.
- § If by eating low-energy density foods, you create an energy deficit in your body, which is
- § supplemented by burning fats.
 - Summary:
 - Low energy density, calorie controlled style of eating
 - o Increased fruit & veg
 - o Reduce sat fat
 - o Reduce portion size
 - o Regular meals especially breakfast
 - o Eat slowly
 - o Self-Monitoring (food diary)

§ Note: Plateaus in weight loss charts are normal & predictable:

• Patients plateau after losing an amount of weight because their energy intake (which was previously creating an energy deficit) is now neutral since his body uses less energy to move the increased body mass. (which is now not there)

- Physical Activity:

- o ↑Incidental Movement (Mov't is an opportunity rather than inconvenience)
- 0 Increase aerobic capacity
- 0 Resistance training
- o Note: Aerobic fitness almost halves risk of cardiovascular disease mortality.
- 0 Note: Increased body fat increases CVD
- 0 However, even a fit, obese person has a lower risk of CVD than an unfit, thin person.
- **O** Benefits of regular physical activity:
 - § \downarrow loss of fat-free mass associated with weight loss
 - § Improves maintenance of weight loss
 - § Improves cardiovascular risk regardless of weight loss.

- Psychological Component of weight Loss:

- o Self monitoring
- o Systematic approach to solving problems
- o Contingency plans for times of overeating
- o Stimulus control (identify triggers for overeating)
- o Stress management
- o Social Support (important for both exercise & maintaining dietary change) Eg: Wife
- **O** Cognitive Restructuring
 - § Changing style of thinking
 - § Changing Dichotomous thinking (all or nothing; passed or failed; good or bad)
 - § Reassessing Unrealistic Goal Setting
 - § Body image issues.

www.getdirectionglobal.com

Bariatric Surgery:

0 Indications:

- § BMI over 40
- § Or life-threatening CVD/diabetes/lifestyle impairment
- § Failure to achieve adequate weight loss with non0surgical treatment

0 Contraindications:

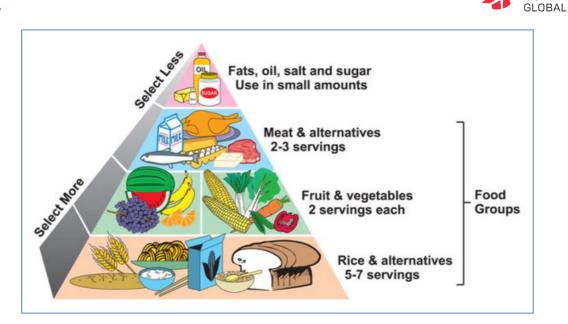
- § High Risk Heart Disease
- § Uncontrolled Depression/Psychotic Illness
- § Active Substance Abuse

Lifestyle Measures to Reduce Risk Factors for Chronic Disease:

*Control Blood Pressure:

- o Lose Weight
- o Regular Physical Activity
- o Nutrition

*Maintain a healthy Weight:


- o Regular Physical Activity
- o Nutrition
- *Physical Activity:
- o ↑Activity; ↓Sedentary Behaviour

*Nutrition:

o o 2x Fruits/Day

o 2x5M3/f/gg/deaty- (Omegas - Essential Fats) o Legumes o Limit Alcohol o Limit Alcohol o Limit Saturated Fats o Calcium (At least 800mg/day) → Helps reduced BP in Hypertension.

NUTRITION:

- The Role of Nutrition in Promoting Health & Preventing Chronic Disease:

- O Helps Control Blood Pressure
- o Helps Control Hypercholesterolaemia
- o Helps Maintain/Achieve a Healthy Body Weight
- o Good Diet Promotes Good Health by supplying the body with all essential vitamins/minerals.

- The Role of Nutrition in Management of Chronic Disease:

- 0 Nutrition & Obesity An Energy Balance:
 - **S** Losing/Maintaining Weight is a simple *Energy Balance*:
 - Ie: Energy Input (Caloric Intake) </= Energy Expenditure (Physical Activity).
 - Note: There *are* certain *Energy-Dense* foods to avoid (Sweets/Cheese/Butter/Etc), However, you can still get fat if you eat *LOTS* of "Healthy" foods.

o Nutrition & Cholesterol – A Problem of SAT-FATs:

S Apparently Saturated Fats → ↑LDL Levels:

- Don't know how, Just Know that it Does. (Possible Controversy)
- (Note: LDLs Low density lipoproteins are "Bad Cholesterol")
- § SOURCES OF SATURATED FAT

ANIMAL PRODUCTS

o Fat on meat

- o Skin on chicken
- o Dairy fats
- o Some "deli meats"

VEGETABLE PRODUCTS

- o Coconut (milk/cream/oil)
- o Palm oil
- o Tropical oil
- O Vegetable oil (unspecified) eg fish shops
- o Many roasted nuts

§ **REPLACING SATURATED FAT:**

- If Pt. Is Overweight: Carbohydrates
- If Pt. Is Thin: Poly- or mono-unsaturated fats
- (Decision depends on BMI)

Get Direction

PHYSICAL ACTIVITY:

The Role of Physical Activity in Promoting Health & Preventing Chronic Disease:

o Note: DECREASING Sedentary Behaviour is MORE EFFECTIVE than INCREASING Exercise

- Both are good, but doing exercise is pointless if you lead a Sedentary Lifestyle.
- **§** What you WANT to do is **↑**PHYSICAL ACTIVITY.
- § Ie: Exercise ≠ Physical Activity:
 - Exercise = Dedicated Physical Exertion
 - **Physical Activity =** Miscellaneous Day-to-Day Activity.
- The Perils of Sedentary Behaviour:
 - **O** Sedentary Behaviour is DIRECTLY LINKED to:
 - § ** CVD (Note: All of the below further contribute to CVD)
 - § *Obesity
 - § *Depression
 - § *Diabetes (Typically type 2)
 - § Osteoporosis
 - § Stroke
 - § Hypertension
 - § High Cholesterol

0 Exercise is known to a) Reduce the Risk of these conditions, but b) Also Decrease their Severity.

§ Ie: Any Increase in Physical Activity (be it small/large) is immensely beneficial, *Even* in patients who already have these diseases.

- The Rewards of **↑**Physical Activity:

- o 个Lean body mass
- o ↑Bone density
- o ↑Cardiac output
- o ↑Oxygen carrying capacity & exchange
- o ↑Metabolism
- o Improved neurotransmitter regulation
- o Improved mood, self-efficacy
- o Improved QOL

- Physical Activity Guidelines:

- § (Note: Moderate Activities = Brisk walk, a Bike ride or Active Play)
- § (Note: Vigorous Activities = Anything that makes the kid "huff and puff" (Ie: Sports))
- 0 5-12 year olds:
 - § Combination of Moderate and Vigorous Activities for At Least **60mins/day**.
 - **§** Note: Children & Adolescents require almost *Double*.
- 0 12-18 year olds:
 - § At least **60mins** of Moderate to Vigorous Physical Activity Every Day.
 - **§** Note: Children & Adolescents require almost *Double*.
- O Adults: Step 1 Think of movement as an opportunity, not an inconvenience
 - S Step 2 Be active every day in as many ways as you can
 - S Step 3 At least **30mins** of Moderate Physical Activity per day. (At least **5 days a week**)
 - S Step 4 Some Regular, Vigorous Activity for *extra* health and fitness.
 - **δ** Note: If Exercise is being used as a disease *Intervention*, the recommendations are
 - § **Doubled**.

o Elderly/Completely Sedentary:

§ ANY Physical Activity is Beneficial.

The Role of Physical Activity in Management of Chronic Disease:

Cardiovascular Disease (Post Myocardial Infarction):

§ Post-MI Exercise is Immediate:

- le: Within days after the MI.
 - Note: However, It is only LOW INTENSITY.
- **Note:** Cardiac Rehab is usually done as an *INPATIENT* under close supervision.
- **§** Recommendations (MI)
 - Begin ASAP
 - 3days/wk
 - 20-60 min (cardiac rehab) PLUS home-based
 - Start @ 40-60% Heart-Rate Reserve; progress to 85%
 - (HR Reserve = 220 Age Resting HR.)
- § Benefits (MI):
 - Improved cardio-respiratory function
 - Protection against exertional MI trigger
 - Reduced HR, BP, LDL, TC

§ Contraindications (CVD):

- Change in Resting ECG Indicating Ischemia/MI/Unstable Angina/Uncontrolled
- Dysrhythmias.
- Symptomatic Aortic Stenosis
- Uncontrolled Heart Failure
- Pulmonary Embolus/infarction
- Myo-/Pericarditis

o Diabetes:

- **§** Diabetics are advised to Cycle/Swim instead of Running:
 - Because Peripheral Vasculopathy & Neuropathy in Diabetes → Repetitive Trauma to
 - feet + Little Sensation \rightarrow Formation of Ulcers.
- § Benefits:
 - Improved Action of Insulin (Insulin Sensitivity)
 - 0 Note: Exercise + Normal dose of Insulin = Additive Effect; can cause
 - $_{\rm O}$ hypoglycaemic shock. Therefore Necessary to $\rm \downarrow$ Insulin dose with Exercise.
 - Note: Can even *Reverse* Type-2 Diabetes.
 - Improved Glucose tolerance
 - Improved weight management
 - Improved BP \rightarrow Decreased CVD Risk
 - Improved Lipid profiles →Decreased CVD risk

§ Recommendations:

- Aerobic Exercise: (20-60min @ Heavy Exertion (High RPE) At least 4 Times/wk)
- Strength: (Low Resistance @ Moderate Exertion (RPE 11-16) 2-3 Times/wk.)
- Flexibility, balance & coordination: (2-3xwk)

§ Precautions:

- Effects of insulin & exercise are ADDITIVE (Adjust insulin dose accordingly)
- If BG <4 or >17 mmol/L, delay exercise until stable
- Always have glucose handy (honey, jelly beans) in case of Insulin Overdose.
- Illness, infection, retinal haemorrhage, peripheral neuropathy